

Huntingdonshire Level 2 Strategic Flood Risk Assessment Site Summary

Site CfS:18

Final Report

Prepared for
Huntingdonshire District
Council

Date
November 2025

Document Status

Issue date 6 November 2025

Issued to Frances Schulz

BIM reference JFI-JBA-XX-XX-RP-EN-0010

Revision P03

Prepared by Amy Ewens BSc

Analyst

Reviewed by Mike Williamson BSc MSc CGeog FRGS EADA

Principal Analyst

Authorised by Paul Eccleston BA CertWEM CEnv MCIWEM C.WEM

Technical Director

Carbon Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Accessibility

JBA aims to align with governmental guidelines on accessible documents and WGAG 2.2 AA standards, so that most people can read this document without having to employ special adaptation measures. This document is also optimised for use with assistive technology, such as screen reading software.

Contract

JBA Project Manager Mike Williamson

Address Phoenix House, Lakeside Drive, Centre Park, Warrington, WA1

1RX

JBA Project Code 2022s1322

This report describes work commissioned by Huntingdonshire District Council by an instruction via email dated 21 July 2025. The Client's representative for the contract was Frances Schulz of Huntingdonshire District Council. Amy Ewens of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of Huntingdonshire District Council in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Huntingdonshire District Council for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

JBA disclaims any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to JBA's attention after the date of the Report.

The methodology adopted and the sources of information used by JBA in providing its services are outlined in this Report. The work described in this Report was undertaken between 21 July 2025 and 6 November 2025 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate.

Acknowledgements

We would like to thank the Environment Agency, Cambridgeshire County Council for their assistance with this work.

Copyright

© Jeremy Benn Associates Limited 2025

Contents

1	Backgrour	nd	1
	1.1	Site CfS:18	1
2	Flood risk	from rivers and sea	5
	2.1	Existing risk	5
	2.2	Flood risk management	6
	2.3	Impacts from climate change	7
	2.4	Historic flood incidents	11
	2.5	Emergency planning	11
	2.6	Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal	13
3	Flood risk	from surface water	15
	3.1	Existing risk	15
	3.2	Impacts from climate change	18
	3.3	Observations, mitigation options, site suitability, sequential approach to development management - surface water	21
4	Cumulativ	e impacts assessment and high risk catchments	23
	4.1	Level 1 cumulative impacts assessment	23
5	Groundwa	ter, geology, soils, SuDS suitability	24
6	Residual r	isk	27
	6.1	Flood risk from reservoirs	27
7	Overall site	e assessment	28
	7.1	Can part b) of the exception test be passed?	28
	7.2	Recommendations summary	28
	7.3	Site-specific FRA requirements and further work	28
8	Licencing		29

٠				•	_			
ı	1	വ	_	٠+	ш.	\sim	1 1 1	00
ı		.51		"	ГΙ	u	u	es
ľ	_	_				.~	- 1.	

Figure 1-1: Existing site location boundary	2
Figure 1-2: Aerial photography	3
Figure 1-3: Topography	4
Figure 2-1: Existing risk	6
Figure 2-2: Natural Flood Management (NFM) potential mapping	7
Figure 2-3: Flood Map for Planning 1% AEP (fluvial) undefended flood event +6% (certain climate change allowance)	ntral 8
Figure 2-4: Flood Map for Planning 0.1% AEP (fluvial) undefended flood event +6% (central climate change allowance)	9
Figure 2-5: Flood Map for Planning 0.5% AEP (tidal) undefended flood event + upper climate change allowance	end 10
Figure 2-6: Flood Map for Planning 0.1% AEP (tidal) undefended flood event + upper climate change allowance	end 11
Figure 2-7: EA Flood Warning Areas and Flood Alert Areas	12
Figure 2-8: Potential access and escape routes	13
Figure 3-1: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)	er 16
Figure 3-2: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)	17
Figure 3-3: Medium risk event surface water flood hazard (Third generation - Risk of Flooding from Surface Water map)	18
Figure 3-4: Low risk event surface water flood extent, as a proxy for the medium risk e plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)	
Figure 3-5: Low risk event surface water flood depths, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water map)	
Figure 3-6: Low risk event surface water flood hazard, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water map)	
Figure 5-1: JBA 5m Groundwater Emergence Map	24
Figure 5-2: Soils and geology	26

List of Tables

Table 2-1: Existing flood risk based on percentage area of site at risk	5
Table 2-2: Modelled climate change allowances for peak river flows for the Middle Level management catchment	Old Bedford and 8
Table 2-3: Modelled climate change allowances for sea level rise for the Ar district	nglian river basin 9
Table 3-1: Existing surface water flood risk based on percentage area at ris NaFRA2 RoFSW map	sk using the 15
Table 5-1: Groundwater Hazard Classification	25

1 Background

This is a Level 2 Strategic Flood Risk Assessment (SFRA) site screening report for Local Plan Site CfS:18. The content of this report assumes the reader has already consulted the 'HDC Level 1 SFRA' (2024) and read the 'HDC Level 2 SFRA Main Report' (2025) and is therefore familiar with the terminology used in this report.

1.1 Site CfS:18

- Location: Eagle Business Park, Phase 3, Yaxley
- Existing site use: Agricultural, existing access road (Falcon Way)
- Existing site use vulnerability: Less vulnerable
- Proposed site use: Commercial
- Proposed site use vulnerability: Less vulnerable
- Site area (ha): 16.7
- Watercourse: Pig Water (unmodelled ordinary watercourse) along the southeastern site boundary and an unnamed and unmodelled ordinary watercourse along the northwest and northeast site boundary.
- Environment Agency (EA) model: N/A
- Summary of requirements from Level 2 SFRA scoping stage:
 - Flood Zone 3b present onsite
 - Assessment of fluvial flood depths, velocities and hazards
 - Assessment of surface water flood extent, depths and hazards
 - Assessment of all other sources of flood risk

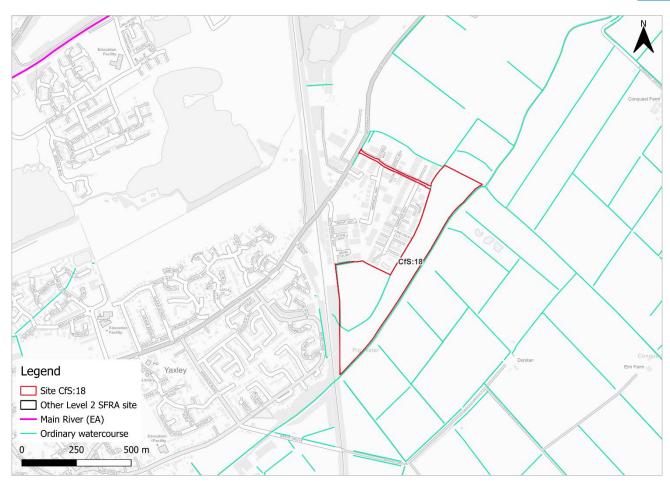


Figure 1-1: Existing site location boundary

Figure 1-2: Aerial photography

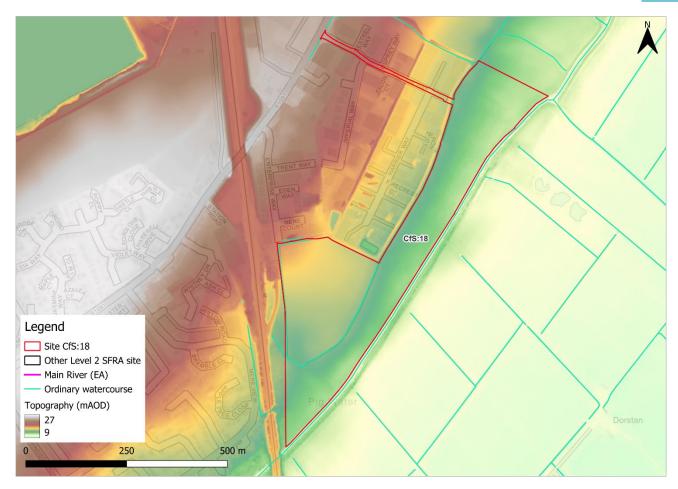


Figure 1-3: Topography

2 Flood risk from rivers and sea

2.1 Existing risk

2.1.1 Flood Map for Planning and functional floodplain

Based on the EA's Flood Map for Planning (accessed July 2025) and Flood Zone 3b (functional floodplain), as updated in this Level 2 SFRA, the percentage areas of the site within each flood zone are stated in Table 2-1 and can be viewed on Figure 2-1. This version of the Flood Map for Planning does not consider flood defence infrastructure (Section 2.2) or the impacts of climate change (Section 2.3).

The majority of the site is located within Flood Zone 1. However, a small area at the western site extent is situated within Flood Zone 3b which is based on the 3.3% AEP defended event outline of the Flood Map for Planning. There is no detailed model available for the reach of the Pig Water that runs adjacent to the site. The flood zones in this area are likely based on the EA's New National Model (NNM).

Table 2-1: Existing flood risk based on percentage area of site at risk

Flood Zone 1 (%	Flood Zone 2 (%	Flood Zone 3a (%	Flood Zone 3b (%
area)	area)	area)	area)
88	3	8	1

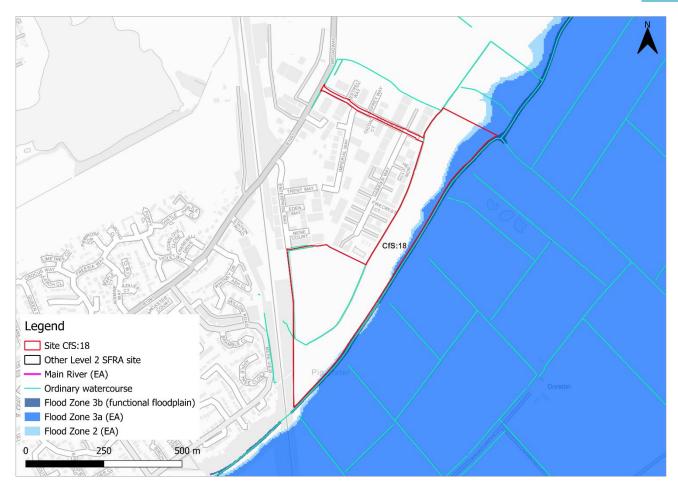


Figure 2-1: Existing risk

2.2 Flood risk management

2.2.1 Flood defences

The site doesn't benefit from any formal engineered flood defences, according to the EA's spatial flood defences dataset.

2.2.2 Working with Natural Processes

The EA's Working with Natural Processes (WwNP) dataset has been interrogated to identify opportunities for Natural Flood Management (NFM) to reduce flood risk to the site and surrounding areas. These areas are shown in Figure 2-2. Note, the WwNP mapping is broadscale and indicative, therefore further investigation will be required for any land shown to have potential for WwNP. Within the site there is some potential for tree planting. The agricultural land to the east of the site contains numerous field drains and ditches. There is significant potential for tree planting for flood alleviation in this area.

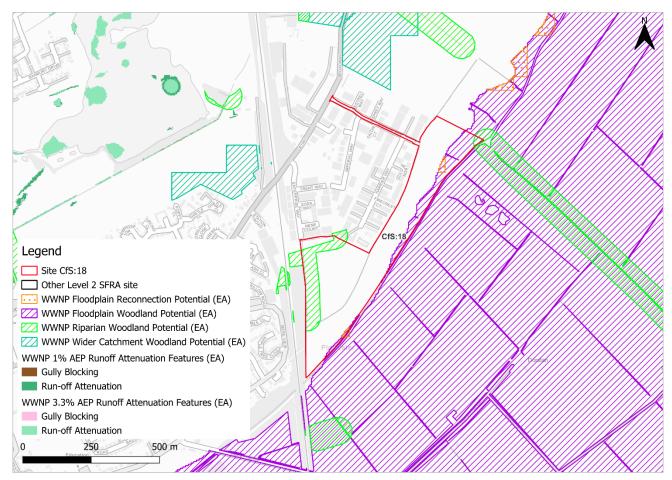


Figure 2-2: Natural Flood Management (NFM) potential mapping

2.3 Impacts from climate change

2.3.1 Fluvial

The EA's SFRA guidance states that SFRAs should assess the central allowance for less, more, highly vulnerable, and water compatible development. The higher central allowance should be assessed for essential infrastructure. However, as there is no existing detailed model of Pig Water, modelling of climate change has not been possible.

The impacts of climate change on flood risk from Pig Water have been modelled by the EA through the New National Model which models the central allowance (+6% on peak river flows for the Old Bedford and Middle Level EA management catchment, see Table 2-2) for the 3.3% AEP defended, 1% AEP defended and undefended, and 0.1% AEP defended and undefended fluvial events.

Table 2-2: Modelled climate change allowances for peak river flows for the Old Bedford and Middle Level management catchment

Return period (AEP event)	Central allowance 2080s (% increase)	Higher central allowance 2080s (% increase)
3.3% (functional floodplain)	6	15
1%	6	15
0.1%	6	15

The defended events do not impact the site whereas the undefended events do for the 1% AEP (Figure 2-3) and 0.1% AEP events (Figure 2-4). The fluvial-only risk on the site during both events is nominal.

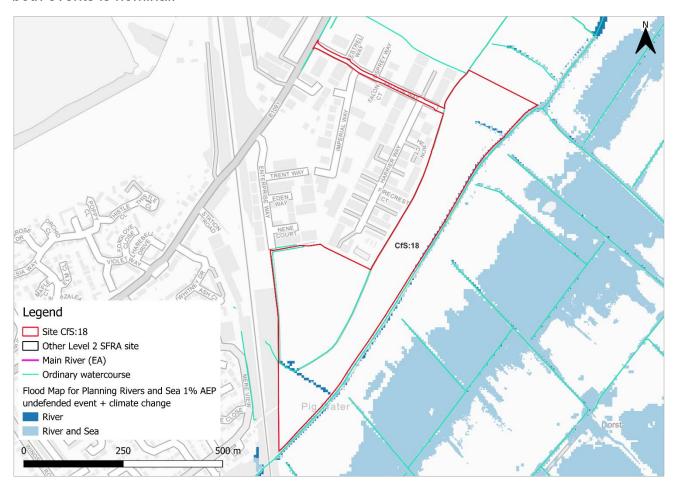


Figure 2-3: Flood Map for Planning 1% AEP (fluvial) undefended flood event +6% (central climate change allowance)

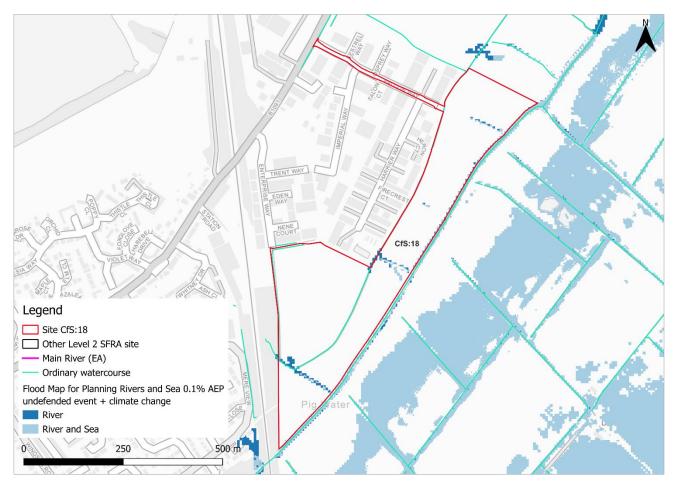


Figure 2-4: Flood Map for Planning 0.1% AEP (fluvial) undefended flood event +6% (central climate change allowance)

2.3.2 Tidal

The impacts of climate change on flood risk have been modelled by the EA through the New National Model which models the upper end cumulative rise to 2125 allowance (see Table 2-3) for the 0.5% AEP defended and undefended, and 0.1% AEP defended and undefended tidal events.

Table 2-3: Modelled climate change allowances for sea level rise for the Anglian river basin district

Allowance category	2000-2035 (mm)	2036-2065 (mm)	2066-2095 (mm)	2096-2125 (mm)	Cumulative rise 2000- 2125 (mm)
Upper end	7 (245)	11.3 (339)	15.8 (474)	18.1 (543)	1.60
Higher central	5.8 (203)	8.7 (261)	11.6 (348)	13 (390	1.20

The defended events do not impact the site whereas the undefended events do for the 0.5% AEP (Figure 2-3) and 0.1% AEP (Figure 2-4) events. There is a significant area of tidal-only risk present along the eastern site boundary.

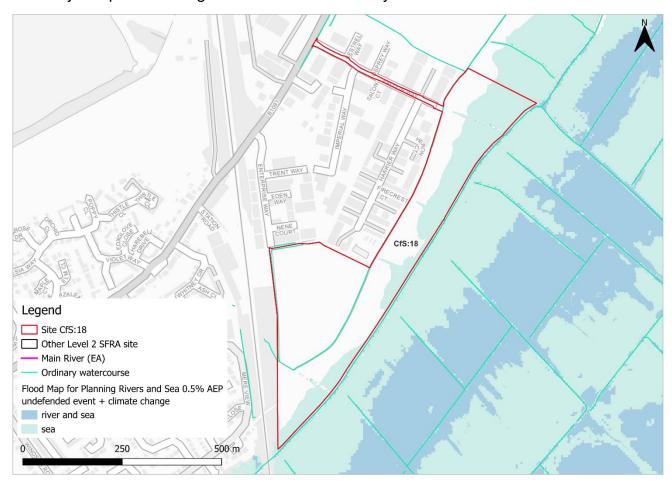


Figure 2-5: Flood Map for Planning 0.5% AEP (tidal) undefended flood event + upper end climate change allowance

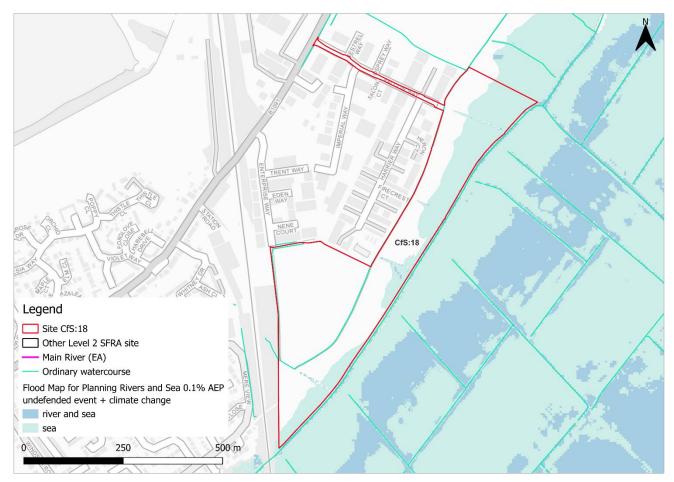


Figure 2-6: Flood Map for Planning 0.1% AEP (tidal) undefended flood event + upper end climate change allowance

2.4 Historic flood incidents

The EA's Historic Flood Map (HFM) and Recorded Flood Outlines (RFO) datasets have been considered which shows that there are no recorded historic flood incidents within the vicinity of the site.

2.5 Emergency planning

2.5.1 Flood warning

The EA operates a Flood Warning Service for properties located within a Flood Warning Area (FWA) for when a flood event is expected to occur. As shown in Figure 2-7, this site is located within a FWA, namely Middle Level Commissioner area at Pondersbridge, Turves and Upwell.

Flood alerts may be issued before a flood warning for properties located within a Flood Alert Area (FAA) to provide advance notice of the possibility of flooding. A flood alert may be issued when there is less confidence that flooding will occur in a FWA. As shown in Figure 2-7, this site is located within a FAA, namely Middle Level of the Fens in Cambridgeshire and Norfolk.

Figure 2-7: EA Flood Warning Areas and Flood Alert Areas

2.5.2 Access and escape routes

Based on available information, safe access and escape routes could likely be achieved during a flood event via Falcon Way and the B1091 in the northwest of the site and via Enterprise Way in the west of the site (Figure 2-8).

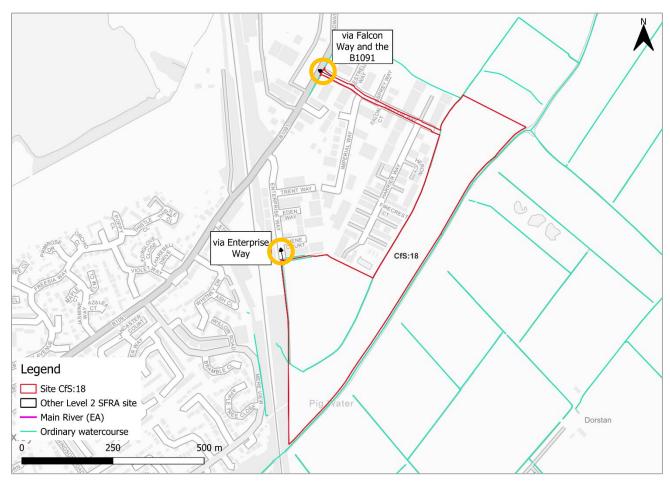


Figure 2-8: Potential access and escape routes

2.6 Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal

Observations:

- The site is largely within Flood Zone 1, though the northeastern side of the site is partially located within Flood Zones 3a and 2. Flood risk at the site is predominantly from tidal sources.
- The EA's Flood Map for Planning climate change modelling shows that tidal flood extents within the site increase significantly when accounting for cumulative sea level rise to 2125.

Mitigation:

- The 1% AEP fluvial and 0.5% AEP tidal event plus climate change areas should remain as open greenspace, offering multifunctional benefits including ecological, social and amenity value to the site.
- The ordinary watercourse should be included within the site design and layout. Infilling of drainage ditches should be avoided.
- If works are proposed on or near Pig Water or the unnamed watercourse, a separate permission may be required. The type of permission needed and whether it must be sought from the Environment Agency, Lead Local Flood

Authority or Internal Drainage Board will depend on the activity and location proposed.

Access and escape:

- Safe access and escape routes must be available at times of flood and appear to be available from the northwest of the site, via Falcon Way and the B1091 Road and the west via Enterprise Way. A FWA is in place however which should provide advanced warning for site users to evacuate ahead of a flood event in the short term. It should be noted that this FWA appears to be loosely based on Flood Zone 2 extent and therefore does not account for the increased climate change risk at the site.
- Safe access and escape routed appear to remain available from the northwest of the site, via Falcon Way and the B1091 Road and the west via Enterprise Way during the 1% (fluvial) / 0.5% (tidal) AEP and 0.1% AEP events plus climate change.
- EA flood warnings and alerts should continue to be in place to ensure early evacuation of site users before an extreme flood event occurs.

3 Flood risk from surface water

3.1 Existing risk

The NaFRA2 Risk of Flooding from Surface Water (RoFSW) mapping received a significant update and was published January 2025, including for surface water flood extents and depths. However, at the time of writing, the EA has confirmed that the depth information available is not structured in a way that is suitable for planning purposes. Therefore, this Level 2 SFRA considers the third generation RoFSW depth and hazard mapping in addition to the NaFRA2 extents, as agreed with the EA. Surface water depth and hazard should be modelled at the site-specific FRA stage.

3.1.1 Risk of Flooding from Surface Water - NaFRA2 extents

Based on the EA's national scale RoFSW map, as updated in January 2025, surface water risk to the site is predominantly very low. Approximately 5% of the site is at high surface water risk. A further 2% is at medium surface water risk and 8% at low surface water risk. Risk tends to be confined to existing field drains and topographic low spots, particularly in the north of the site, as shown in Figure 3-1.

Table 3-1: Existing surface water flood risk based on percentage area at risk using the NaFRA2 RoFSW map

Very low risk (% area)	Low risk (% area)	Medium risk (% area)	High risk (% area)
85	8	2	5

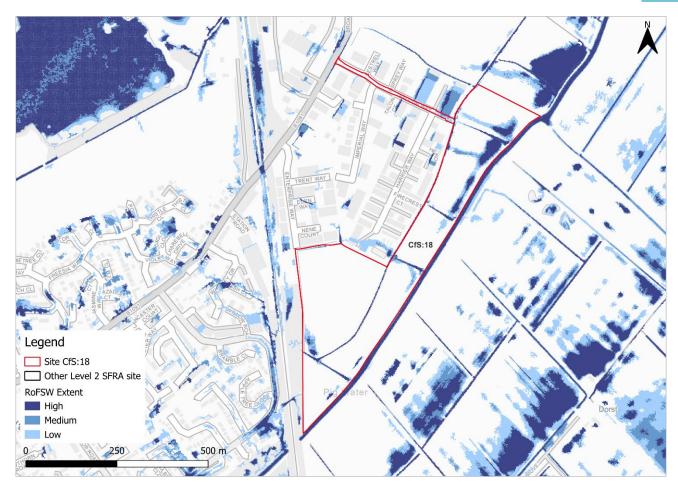


Figure 3-1: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)

3.1.2 Risk of Flooding from Surface Water - third generation depths and hazard

Based on the EA's national scale third generation RoFSW map, an area of ponding in the northeast of the site is predicted during the medium risk event which is predicted to reach depths of between 0.15m and 0.30m (Figure 3-2) and be a moderate hazard (Figure 3-3). There are also four small areas of ponding within the site which are predicted to reach depths exceeding 1.2m and be a significant hazard. The third generation mapping is similar to the NaFRA2 RoFSW mapping.

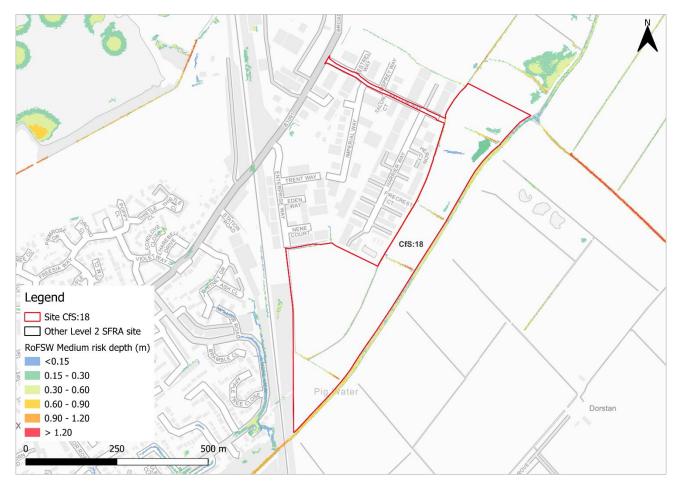


Figure 3-2: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)

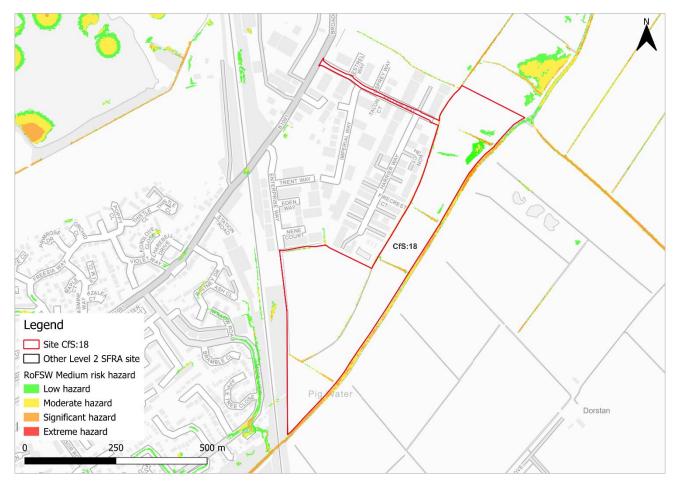


Figure 3-3: Medium risk event surface water flood hazard¹ (Third generation - Risk of Flooding from Surface Water map)

3.2 Impacts from climate change

The NaFRA2 RoFSW mapping now includes one modelled climate change scenario, the 2050s central allowance for the high, medium and low risk events. However, the upper end allowance on peak rainfall for the 2070s should be assessed in SFRAs. Therefore, at the time of writing, the available national surface water climate change mapping is unsuitable for consideration in development planning. This Level 2 SFRA considers the low risk surface water event as a conservative proxy for the medium risk event plus climate change, as agreed with the EA. The impact of climate change on surface water flood risk should be fully accounted for at the site-specific FRA stage.

Based on the information available, surface water risk is largely contained to the northeast of the site, with smaller areas on ponding present in the centre and southwest (Figure 3-4).

The largest area of ponding in the northeast of the site is predicted to reach depths between 0.30m and 0.60m (Figure 3-5) and be a moderate hazard (Figure 3-6). There are also several flow routes along existing field drains.

¹ Based on Section 7.5 Hazard rating. What is the Risk of Flooding from Surface Water map? Report version 2.0. April 2019. Environment Agency

Four small areas of risk, in the drainage ditches running through the site, are predicted to exceed depths of 1.2m and be a significant hazard with the exception of one ditch in the centre of the site which is predicted to pose an extreme hazard. The areas of ponding are predominantly predicted to be low to moderate hazards.

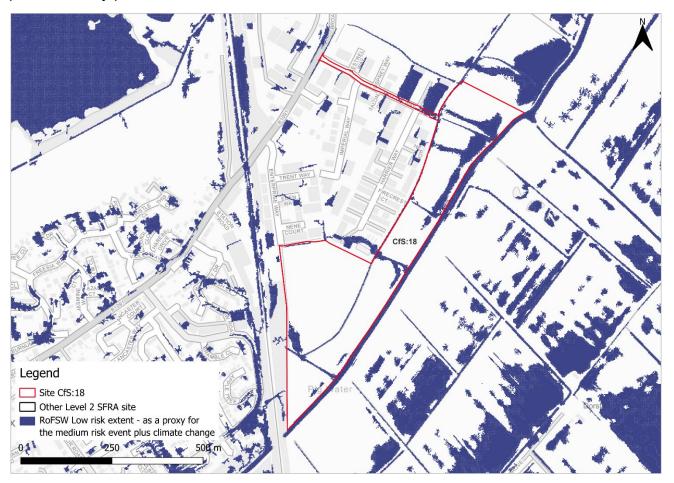


Figure 3-4: Low risk event surface water flood extent, as a proxy for the medium risk event plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)

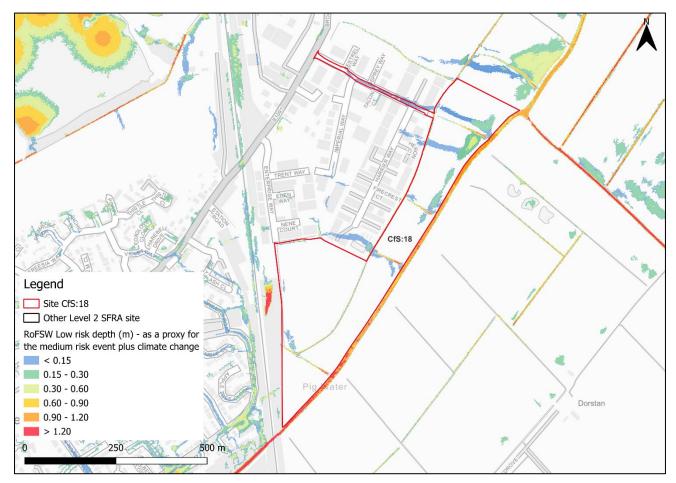


Figure 3-5: Low risk event surface water flood depths, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)

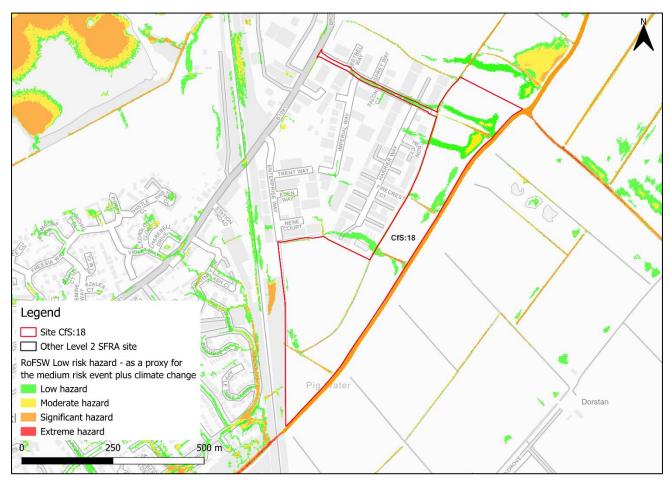


Figure 3-6: Low risk event surface water flood hazard, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)

3.3 Observations, mitigation options, site suitability, sequential approach to development management - surface water

- Current risk to the site is predominantly very low, with 85% of the site being at very low surface water flood risk. Surface water risk in the high and medium risk events is present in small areas of ponding and in existing field drains throughout the site, but mostly in the northeast extent.
- In the low risk surface water event, there are some additional areas of shallow surface water ponding across the site.
- The effects of climate change on surface water have not been modelled for this SFRA, however the low risk surface water event has been used as a proxy for the medium risk event plus climate change. Risk is largely similar to the medium risk event, with a greater extent of ponding within the topographic low spots.
- Surface water flood depths, hazards, including for the impact of climate change should be considered further through the site-specific FRA and drainage strategy. Any surface water modelling at the FRA stage should consider flood depths and hazards.
- The main area of risk along Pig Water should be left free of development and used as a blue green corridor which can provide multiple benefits alongside flood

- risk, including ecological, social and amenity benefits. This approach should also be considered for other existing flow paths, ditches and topographic low spots.
- Were development plans to proceed, a full detailed drainage strategy would be required to ensure there is no increase in surface water flood risk elsewhere as a result of new development. This may require surface water modelling based on layout plans and detailed design and consultation with the LLFA.
- Runoff volumes should remain at current greenfield rates or betterment should look to be achieved. National SuDS guidance and any local guidance available from the LLFA.
- Safe access and escape routes appear to be possible when accounting for climate change.
- The RoFSW map is not suitable for identifying whether an individual property will flood and is therefore indicative. The RoFSW map is not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment of risk in relation to flooding at any scale without further supporting studies, modelling, or evidence.
- The LLFA are concerned the site is a higher risk for hazardous depths of flooding, and taking into consideration the size of the site, the suitability of this greenfield site for development is questioned. The LLFA agree with the recommendation regarding a blue green corridor.

4 Cumulative impacts assessment and high risk catchments

4.1 Level 1 cumulative impacts assessment

A cumulative impact assessment was completed through the Huntingdonshire Level 1 SFRA (2024), which aimed to identify catchments sensitive to the cumulative impact of new development. This site is located within one catchment, namely, the Middle Level catchment. This catchment is ranked as a medium sensitivity catchment. Planning considerations for sites at medium sensitivity to the cumulative impacts of development can be found in Appendix G of the Level 1 SFRA. Cumulative impacts of development should also be considered as part of a site-specific FRA.

5 Groundwater, geology, soils, SuDS suitability

Risk of groundwater emergence is assessed in this SFRA using JBA's 5m Groundwater Emergence Map. This dataset is recommended for use by the EA in the SFRA Good Practice Guide². Figure 5-1 shows the map covering this site and the surrounding areas. Table 5-1 explains the risk classifications.

Figure 5-1: JBA 5m Groundwater Emergence Map

The whole of the site is classified as no risk of groundwater emergence. Any infiltration SuDS should therefore be suitable at this site.

² Strategic flood risk assessment good practice guide. ADEPT. December 2021.

Table 5-1: Groundwater Hazard Classification

Groundwater head difference (m)*	Class label			
0 to 0.025	Groundwater levels are either at very near (within 0.025m of) the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to both surface and subsurface assets. Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots.			
0.025 to 0.5	Groundwater levels are between 0.025m and 0.5m below the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to surface and subsurface assets. There is the possibility of groundwater emerging at the surface locally.			
0.5 to 5	Groundwater levels are between 0.5m and 5m below the ground surface in the 100-year return period flood event There is a risk of flooding to subsurface assets, but surface manifestation of groundwater is unlikely.			
>5	Groundwater levels are at least 5m below the ground surface in the 100-year return period flood event. Flooding from groundwater is not likely.			
N/A	No risk. This zone is deemed as having a negligible risk from groundwater flooding due to the nature of the local geological deposits.			
*Difference is defined as ground surface in mAOD minus modelled groundwater table in mAOD.				

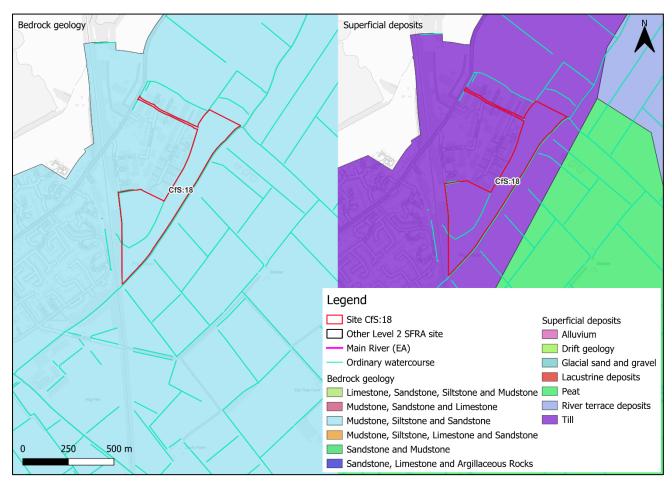


Figure 5-2: Soils and geology

6 Residual risk

Although a site may be afforded some protection from defences and / or drainage infrastructure, there is always a residual risk of flooding from asset failure i.e. breaching / overtopping of flood defences, blockages of culverts or drainage assets.

Based on available information, there does not appear to be any residual risk to this site.

6.1 Flood risk from reservoirs

The EA's Reservoir Flood Maps (RFM) (2021) show where water may go in the unlikely event of a reservoir or dam failure. A 'dry day' scenario assumes that the water level in the reservoir is the same as the spillway level or the underside of the roof for a service reservoir and the watercourses upstream and downstream of the reservoir are at a normal level. A 'wet day' scenario assumes a worst-case scenario where a reservoir releases water held on a 'wet day' when local rivers have already overflowed their banks.

The site is not modelled to be at risk from reservoir flooding.

7 Overall site assessment

7.1 Can part b) of the exception test be passed?

This site is not required to pass part b) of the exception test as it is proposed for less vulnerable development, however it must still be proven that the development can be safe for its lifetime, which is 75 years for commercial development. The nominal area of functional floodplain onsite should not trigger the exception test nor negate any development plans

7.2 Recommendations summary

Based on the evidence presented in the Level 1 SFRA (2024) and this Level 2 SFRA:

- The New National Model shows the site to be at risk in the future due to climate change. In the absence of detailed modelling, the risk area should ideally be left free of development. If developed, appropriate flood warning, emergency plans, and property flood resilience techniques should be considered.
- A detailed drainage strategy will be required for any new development, given the areas of ponding, flow routes, and increased risk from climate change.
- The area along Pig Water should be left free of development and used as a blue green corridor.
- The ordinary watercourse within the site should be included within site design and layout. Infilling of drainage ditches should be avoided.
- Opportunities for NFM features to reduce flood risk to the site and surrounding areas should be explored at the site-specific FRA stage.
- Safe access and escape routes should be available from the northwest and west of the site.

7.3 Site-specific FRA requirements and further work

At the planning application stage, the following should be considered:

- Further consideration of surface water flood risk and risk from the ordinary watercourses, including a drainage strategy. Discharge rates should remain at greenfield rates at a minimum in consultation with the LLFA.
- FRA should be carried out in line with the latest versions of the NPPF; FRCC-PPG; EA online guidance; the HDC Local Plan, and national and local SuDS policy and guidelines.
- Throughout the FRA process, consultation should be carried out with, where applicable, the local planning authority; the lead local flood authority; emergency planning officers; the Environment Agency; Anglian Water; the highways authorities; and the emergency services.

8 Licencing

To cover all figures within this report:

- Contains Environment Agency information © Environment Agency and/or database right [2025]
- Contains public sector information licensed under the Open Government Licence v3.0. © Crown copyright and database rights [2025]
- HDC Ordnance Survey licence number: 100022322 [2025]
- © 2021 Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community

www.jbaconsulting.com

Our Offices

Limerick

Bristol Newcastle Coleshill Newport Cork Peterborough Doncaster Portsmouth Dublin Saltaire Edinburgh Skipton Exeter **Tadcaster** Thirsk Glasgow Haywards Heath Wallingford Leeds Warrington

JBA Risk

Management Inc

USA

Ireland UK

Romania

JBA Consulting
JBA Risk Management
JBA Global Resilience

Mekong Modelling Associates

JBA Risk Management Pte Ltd

Singapore

Cambodia_

Australia

JBPacific

Registered Office

JBA Consulting

JBA Consult Europe

Ireland

1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom +44(0) 1756 799919 info@jbaconsulting.com www.jbaconsulting.com

Follow us on X in

Jeremy Benn Associates Limited Registered in England 3246693 JBA Group Ltd is certified to ISO 9001:2015 ISO 14001:2015 ISO 27001:2022 ISO 45001:2018

