

Huntingdonshire Level 2 Strategic Flood Risk Assessment Site Summary

Site CfS23-24298

Final Draft Report

Prepared for
Huntingdonshire District
Council

Date
November 2025

Document Status

Issue date 6 November 2025

Issued to Frances Schulz

BIM reference JFI-JBA-XX-XX-RP-EN-0052

Revision P03

Prepared by Jackson Pawley BSc

Analyst

Reviewed by Mike Williamson BSc MSc CGeog FRGS EADA

Principal Analyst

Authorised by Paul Eccleston BA CertWEM CEnv MCIWEM C.WEM

Technical Director

Carbon Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Accessibility

JBA aims to align with governmental guidelines on accessible documents and WGAG 2.2 AA standards, so that most people can read this document without having to employ special adaptation measures. This document is also optimised for use with assistive technology, such as screen reading software.

Contract

JBA Project Manager Mike Williamson

Address Phoenix House, Lakeside Drive, Centre Park, Warrington, WA1

1RX

JBA Project Code 2022s1322

This report describes work commissioned by Huntingdonshire District Council by an instruction via email dated 21 July 2025. The Client's representative for the contract was Frances Schulz of Huntingdonshire District Council. (Jackson Pawley) of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of Huntingdonshire District Council in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Huntingdonshire District Council for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

JBA disclaims any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to JBA's attention after the date of the Report.

The methodology adopted and the sources of information used by JBA in providing its services are outlined in this Report. The work described in this Report was undertaken between 21 July 2025 and 6 November 2025 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate.

Acknowledgements

We would like to thank the Environment Agency, Cambridgeshire County Council for their assistance with this work.

Copyright

© Jeremy Benn Associates Limited 2025

Contents

1	Backgrour	nd	1
	1.1	Site CfS23-24298	1
2	Flood risk	from rivers and sea	5
	2.1	Existing risk	5
	2.2	Flood risk management	6
	2.3	Impacts from climate change	7
	2.4	Historic flood incidents	8
	2.5	Emergency planning	9
	2.6	Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal	10
3	Flood risk	from surface water	12
	3.1	Existing risk	12
	3.2	Impacts from climate change	15
	3.3	Observations, mitigation options, site suitability, sequential	
		approach to development management - surface water	18
4	Cumulative	e impacts assessment and high risk catchments	20
	4.1	Level 1 cumulative impacts assessment	20
5	Groundwa	ter, geology, soils, SuDS suitability	21
6	Residual r	isk	24
	6.1	Potential blockage	24
	6.2	Flood risk from reservoirs	24
7	Overall site assessment		
	7.1	Can part b) of the exception test be passed?	26
	7.2	Recommendations summary	26
	7.3	Site-specific FRA requirements and further work	27
8	Licencing		28

	_			
.ist	\sim t	 \sim	1 1 1	-00
151	()	(1	111	

Figure 1-1	: Existing site location boundary	2
Figure 1-2	: Aerial photography	3
Figure 1-3	: Topography	4
Figure 2-1	: Existing risk	6
Figure 2-2	: Natural Flood Management (NFM) potential mapping	7
Figure 2-3	: Flood Map for Planning 1% and 0.1% AEP defended flood events +6% (ce climate change allowance)	ntral 8
Figure 2-4	: EA Flood Warning Areas and Flood Alert Areas	9
Figure 2-5	: Potential access and escape routes	10
Figure 3-1	: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)	er 13
Figure 3-2	: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)	14
Figure 3-3	: Medium risk event surface water flood hazard (Third generation - Risk of Flooding from Surface Water map)	15
Figure 3-4	: Low risk event surface water flood extent, as a proxy for the medium risk e plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)	
Figure 3-5	i: Low risk event surface water flood depths, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water map)	
Figure 3-6	: Low risk event surface water flood hazard, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water map)	
Figure 5-1	: JBA 5m Groundwater Emergence Map	21
Figure 5-2	: Soils and geology	23
Figure 6-1	: Potential blockage	24
Figure 6-2	: EA Reservoir Flood Map	25

List of Tables

Table 2-1: Existing flood risk based on percentage area of site at risk	5
Table 2-2: Modelled climate change allowances for peak river flows for the Nene management catchment	8
Table 3-1: Existing surface water flood risk based on percentage area at risk using the NaFRA2 RoFSW map	12
Table 5-1: Groundwater Hazard Classification	22

1 Background

This is a Level 2 Strategic Flood Risk Assessment (SFRA) site screening report for Local Plan Site CfS23-24298. The content of this report assumes the reader has already consulted the 'HDC Level 1 SFRA' (2024) and read the 'HDC Level 2 SFRA Main Report' (2025) and is therefore familiar with the terminology used in this report.

1.1 Site CfS23-24298

- Location: Land North Of 23 To 33 Oundle Road, Alwalton (larger site)
- Existing site use: Agricultural
- Existing site use vulnerability: Less vulnerable
- Proposed site use: Mixed use
- Proposed site use vulnerability: More vulnerable
- Site area (ha): 12.3
- Watercourse: River Nene
- Environment Agency (EA) model: N/A
- Summary of requirements from Level 2 SFRA scoping stage:
 - Subject to the Exception Test as more vulnerable development proposed in Flood Zone 3a
 - Assessment of fluvial flood depths, velocities and hazards
 - Assessment of surface water flood extent, depths and hazards
 - Assessment of all other sources of flood risk

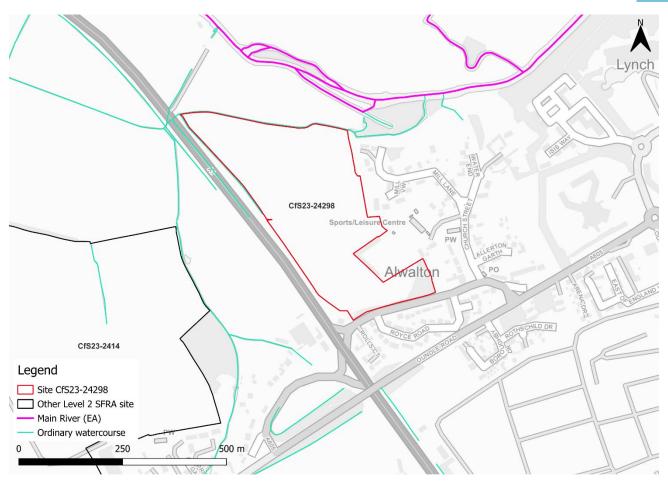


Figure 1-1: Existing site location boundary

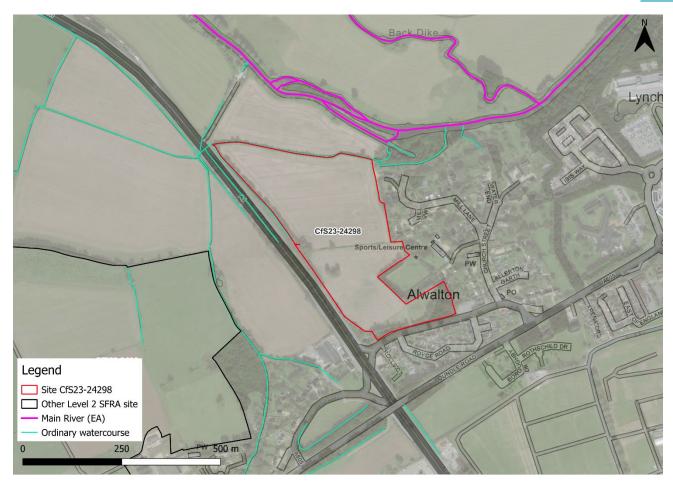


Figure 1-2: Aerial photography

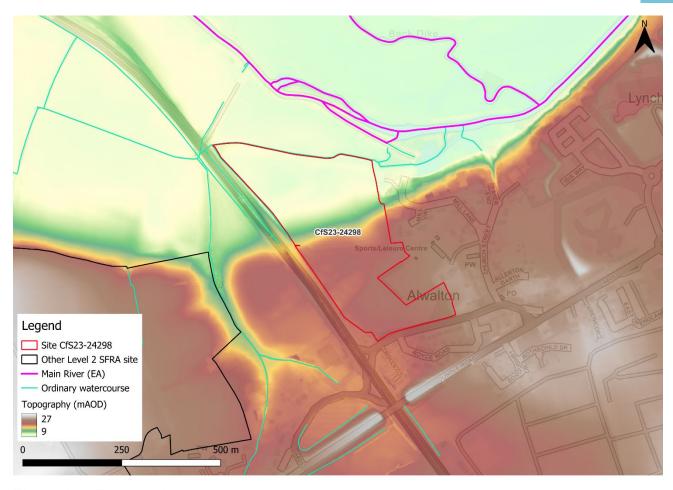


Figure 1-3: Topography

2 Flood risk from rivers and sea

2.1 Existing risk

2.1.1 Flood Map for Planning and functional floodplain

Based on the EA's Flood Map for Planning (accessed July 2025) and Flood Zone 3b (functional floodplain), as updated in this Level 2 SFRA, the percentage areas of the site within each flood zone are stated in Table 2-1 and can be viewed on Figure 2-1. This version of the Flood Map for Planning does not consider flood defence infrastructure (Section 2.2) or the impacts of climate change (Section 2.3).

The site is mostly within Flood Zone 1 indicating a low risk of flooding from rivers and sea. Although the northern area of the site is within Flood Zone 2 and the northeastern corner is slightly within Flood Zone 3a due to the presence of the River Nene which flows approximately 60m north of the boundary. There is no detailed model available for the River Nene, therefore the risk is likely based on the EA's New National Model. It is therefore not possible to assess fluvial flood depths or hazards.

There are also ordinary watercourses present west, south and along the northern boundary that may act as drainage ditches which are not included within the Flood Map for Planning.

Table 2-1: Existing flood risk based on percentage area of site at risk

Flood Zone 1 (%	Flood Zone 2 (%	Flood Zone 3a (%	Flood Zone 3b (%
area)	area)	area)	area)
68	31	1	0

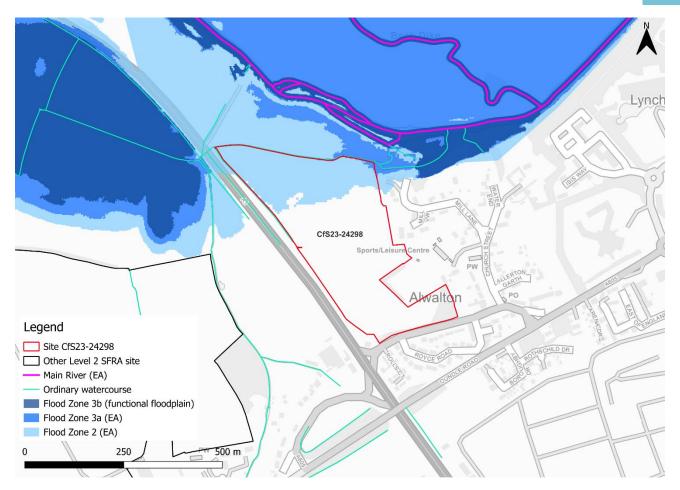


Figure 2-1: Existing risk

2.2 Flood risk management

2.2.1 Flood defences

There are no flood defences in the vicinity of the site, according to the EA's Spatial Flood Defences dataset.

2.2.2 Working with Natural Processes

The EA's Working with Natural Processes (WwNP) dataset has been interrogated to identify opportunities for Natural Flood Management (NFM) to reduce flood risk to the site and surrounding areas. These areas are shown in Figure 2-2. Note, the WwNP mapping is broadscale and indicative, therefore further investigation will be required for any land shown to have potential for WwNP. There is potential for floodplain and riparian woodland planting in the northern area of the site and along the western boundary. Tree planting can help to reduce runoff. Runoff attenuation is also predicted in the 3.3% and 1% AEP events in two patches in the north of the site. This reduces peak flow rate and mitigates flooding.

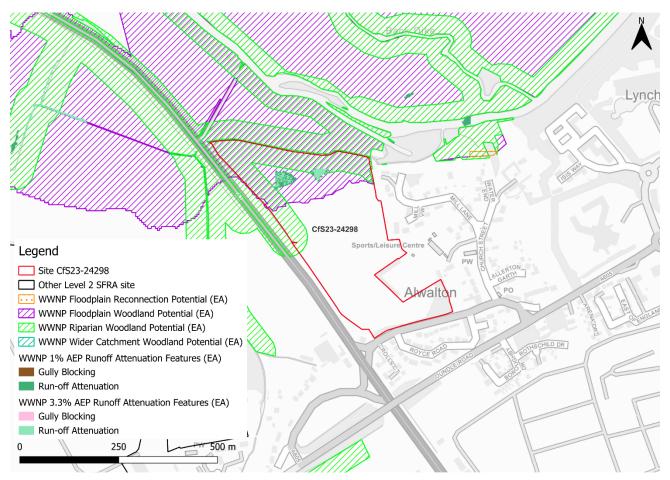


Figure 2-2: Natural Flood Management (NFM) potential mapping

2.3 Impacts from climate change

2.3.1 Fluvial

The EA's SFRA guidance states that SFRAs should assess the central allowance for less, more, highly vulnerable, and water compatible development. The higher central allowance should be assessed for essential infrastructure. However, as there is no existing detailed model of the River Nene, modelling of climate change has not been possible.

The impacts of climate change on flood risk from the River Nene have been modelled by the EA through the New National Model which models the central allowance (+6% on peak river flows for the Nene EA management catchment) for the 3.3% AEP defended, 1% AEP defended and undefended, and 0.1% AEP defended and undefended fluvial events. The flood extents during the defended and undefended events are similar. During the defended climate change events, risk as modelled to be similar to that shown in Flood Zones 2 and 3a, impacting the north of the site, south of the River Nene as shown in Figure 2-3.

With consideration of the EA's SFRA guidance, the latest central and higher central climate change allowances have been modelled as shown in Table 2-2.

Table 2-2: Modelled climate change allowances for peak river flows for the Nene management catchment

Return period (AEP event)	Central allowance 2080s (% increase)	Higher central allowance 2080s (% increase)
3.3% (functional floodplain)	6%	13%
1%	6%	13%
0.1%	6%	13%

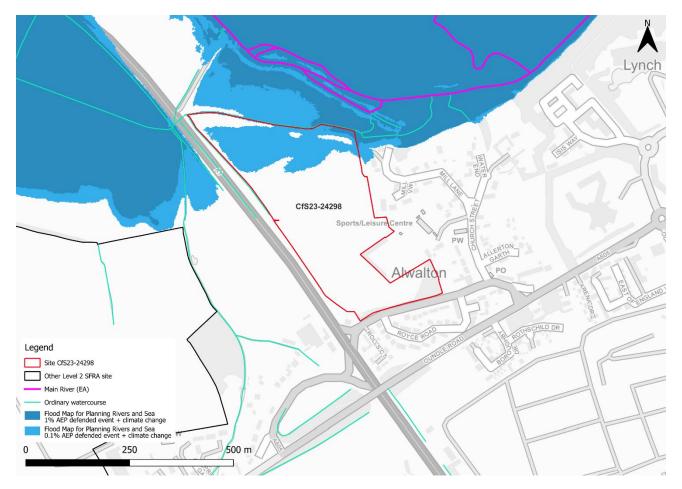


Figure 2-3: Flood Map for Planning 1% and 0.1% AEP defended flood events +6% (central climate change allowance)

2.3.2 Tidal

The EA's Flood Map for Planning shows the site is not at risk from tidal climate change.

2.4 Historic flood incidents

The EA's Historic Flood Map (HFM) and Recorded Flood Outlines (RFO) datasets have been considered. There are no recorded historic flood events within the vicinity of the site.

2.5 Emergency planning

2.5.1 Flood warning

The EA operates a Flood Warning Service for properties located within a Flood Warning Area (FWA) for when a flood event is expected to occur. As shown in Figure 2-4, this site is located within a FWA, namely Lincs and Northants FWA.

Flood alerts may be issued before a flood warning for properties located within a Flood Alert Area (FAA) to provide advance notice of the possibility of flooding. A flood alert may be issued when there is less confidence that flooding will occur in a FWA. As shown in Figure 2-4, this site is located within a FAA, namely Lincs and Northants FAA.

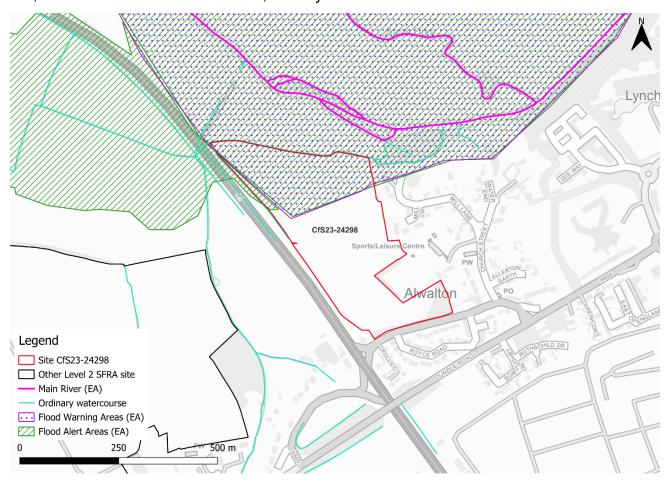


Figure 2-4: EA Flood Warning Areas and Flood Alert Areas

2.5.2 Access and escape routes

Based on available information, safe access and escape routes could likely be achieved during a flood event via Oundle Road along the southern boundary of the site, as shown in Figure 2-5.

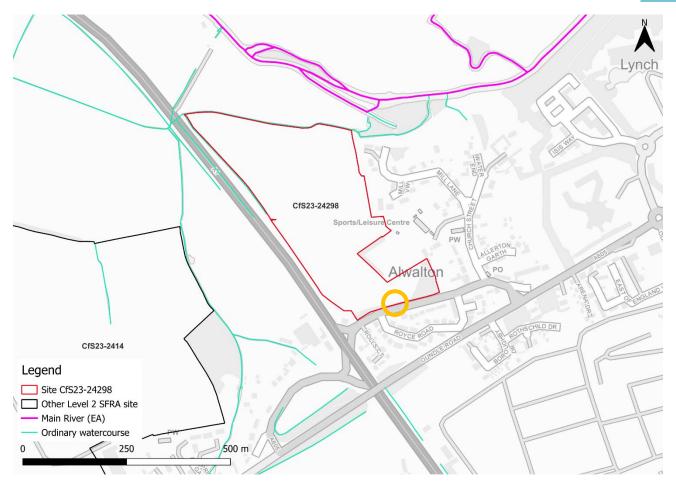


Figure 2-5: Potential access and escape routes

2.6 Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal

Observations:

- The proposed development of the site would see a change in the risk classification from less vulnerable to more vulnerable, according to the NPPF.
- The site is partially located within fluvial Flood Zone 3a and therefore must be subject to the exception test. Risk from climate change is modelled to further impact the site when comparing Flood Zone 3a to the 1% AEP plus climate change event.
- The extent of fluvial risk from the unmodelled watercourse is currently unknown. Using the 0.1% AEP surface water event as a proxy, risk is modelled to remain largely confined to the areas immediately surrounding the watercourse in the north and a flow path in the southwest.

Defences:

 There are no engineered flood defences within the vicinity of the site that are likely to impact fluvial flood risk.

Mitigation:

- The site-specific FRA should develop a model of the River Nene to fully understand the onsite fluvial risk and look to include the channel and risk areas within a blue green corridor.
- Were development of this site to proceed, given the proximity of this site to neighbouring site CfS23-2414, it would be prudent to formulate a strategy to develop these sites in tandem and for consultation between each developer to take place to ensure a joined-up approach for sustainable development is in place.
- All development should avoid Flood Zone 3a and Flood Zone 2 should be left as open greenspace but if it were to be developed, preferably less vulnerable uses should be built in Flood Zone 2. This should be confirmed through modelling required to confirm depths and hazards.
- o Emergency planning procedures, such as FWA are required.
- Given the proximity of the site to the River Nene and other ordinary watercourses, a flood risk activity permit for development may be required. The type of permission required must be sought from the Environment Agency, Lead Local Flood Authority or Internal Drainage Board.

• Access and escape:

- Safe access and escape routes must be available at times of flood and appear to be available from the south of the site, via Oundle Road, travelling east. A FWA is in place however which should provide advanced warning for site users to evacuate ahead of a flood event in the short term.
- EA flood warnings and alerts should continue to be in place to ensure early evacuation of site users before an extreme flood event occurs.

3 Flood risk from surface water

3.1 Existing risk

The NaFRA2 Risk of Flooding from Surface Water (RoFSW) mapping received a significant update and was published January 2025, including for surface water flood extents and depths. However, at the time of writing, the EA has confirmed that the depth information available is not structured in a way that is suitable for planning purposes. Therefore, this Level 2 SFRA considers the third generation RoFSW depth and hazard mapping in addition to the NaFRA2 extents, as agreed with the EA. Surface water depth and hazard should be modelled at the site-specific FRA stage.

3.1.1 Risk of Flooding from Surface Water - NaFRA2 extents

Based on the EA's national scale RoFSW map, as updated in January 2025, surface water flood risk across the site is varied. 6% of the site is modelled to be at risk during the high risk event, 9% is at risk in the medium risk event and 16% is at risk during the low risk event. 84% of the site is at very low risk of flooding from surface water, as shown in Table 3-1. Risk is largely predicted in the north of the site where there are areas of ponding. There are also patches in the southwest where an offsite flow path from the main road parallel to the western boundary causes flooding to the site, as shown in Figure 3-1.

Table 3-1: Existing surface water flood risk based on percentage area at risk using the NaFRA2 RoFSW map

Very low risk (% area)	Low risk (% area)	Medium risk (% area)	High risk (% area)
84	16	9	6

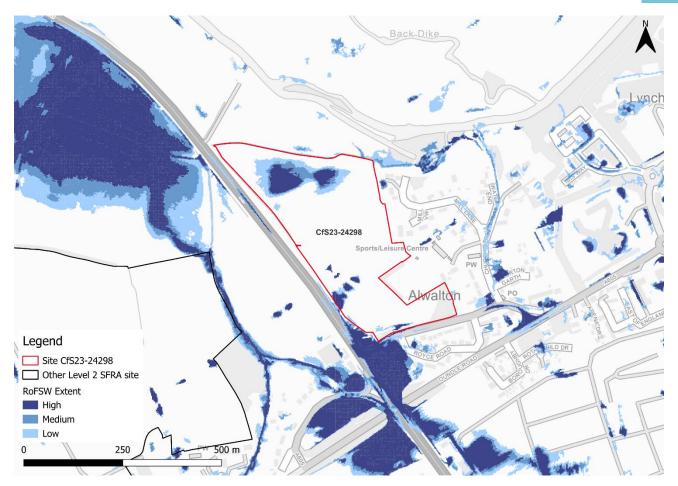


Figure 3-1: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)

3.1.2 Risk of Flooding from Surface Water - third generation depths and hazard

The flood extents from the NaFRA2 RoFSW and the third-generation map are similar, though the third-generation map has a smaller extent of flooding in the west of the site.

Based on the EA's national scale third generation RoFSW map, during the medium risk event, flood depths across the affected areas in the north are between 0.15 and 0.3m but there are patches in the south which reach a depth of 0.3-0.6m parallel to the main road. Similarly, there is a low hazard rating in the north but a small patch where a moderate hazard is predicted in the southwest.

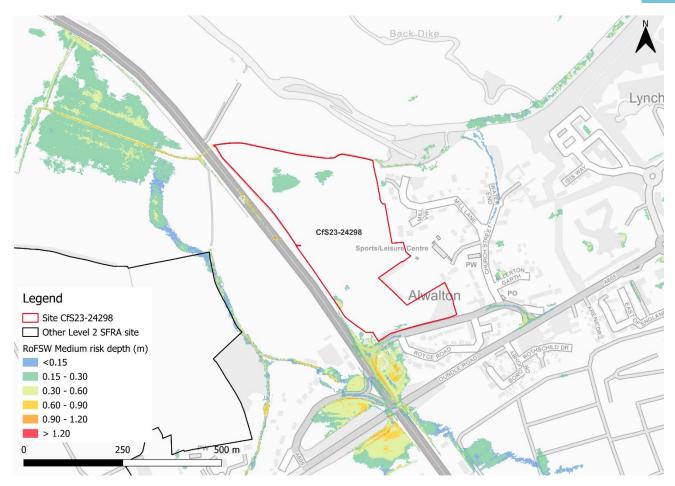


Figure 3-2: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)

Figure 3-3: Medium risk event surface water flood hazard¹ (Third generation - Risk of Flooding from Surface Water map)

3.2 Impacts from climate change

The NaFRA2 RoFSW mapping now includes one modelled climate change scenario, the 2050s central allowance for the high, medium and low risk events. However, the upper end allowance on peak rainfall for the 2070s should be assessed in SFRAs. Therefore, at the time of writing, the available national surface water climate change mapping is unsuitable for consideration in development planning. This Level 2 SFRA considers the low risk surface water event as a conservative proxy for the medium risk event plus climate change, as agreed with the EA. The impact of climate change on surface water flood risk should be fully accounted for at the site-specific FRA stage.

Based on the information available, surface water flood risk to the site may increase slightly with climate change. The flow path in the southwest, as well as pooling in the north of the site, may expand in size. The flood depth is also predicted to increase to between 0.3 and 0.6m over most of the affected areas. There is a moderate hazard predicted over most of the affected areas with a significant hazard in the southwest of the site.

¹ Based on Section 7.5 Hazard rating. What is the Risk of Flooding from Surface Water map? Report version 2.0. April 2019. Environment Agency

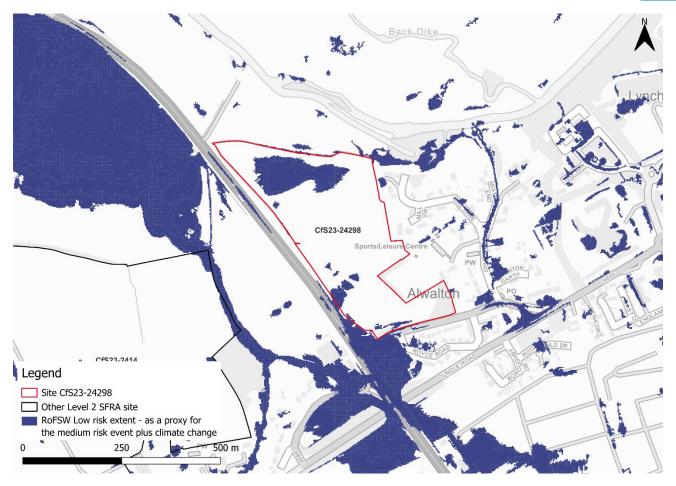


Figure 3-4: Low risk event surface water flood extent, as a proxy for the medium risk event plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)

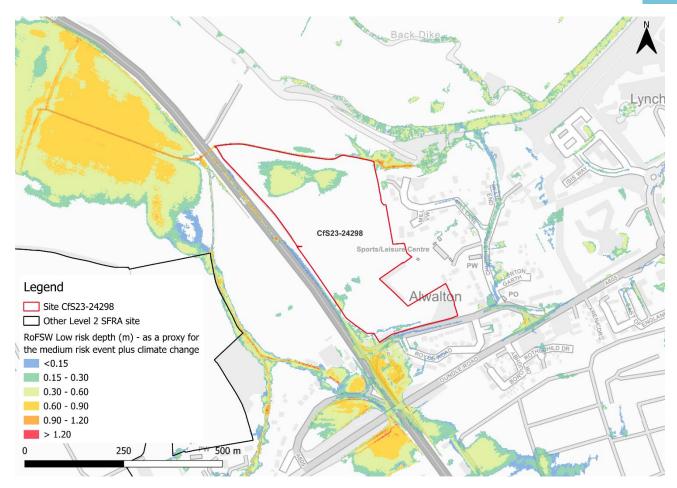


Figure 3-5: Low risk event surface water flood depths, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)

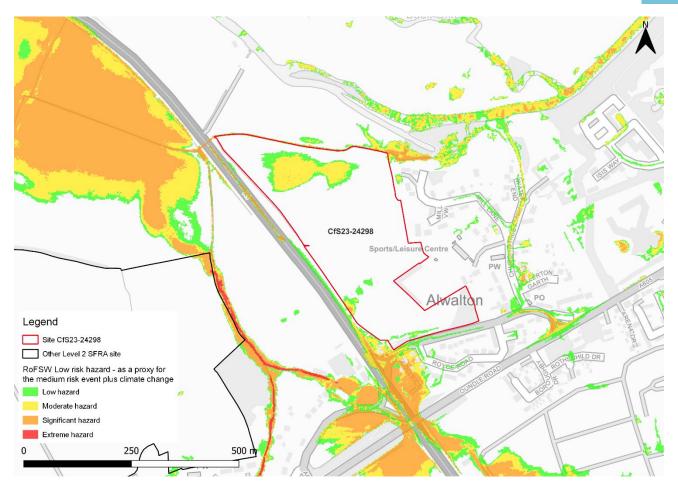


Figure 3-6: Low risk event surface water flood hazard, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)

3.3 Observations, mitigation options, site suitability, sequential approach to development management - surface water

- Current risk to the site is predominantly very low, with 84% of the site being at very low surface water flood risk. Surface water risk in the high and medium risk events is confined to areas of ponding within topographic low spots in the east of the site.
- The effects of climate change on surface water have not been modelled for this SFRA, however the low risk surface water event has been used as a proxy for the medium risk event plus climate change. Risk is largely similar to the medium risk event, with a greater extent of ponding within the topographic low spots.
- Surface water flood depths, hazards, including for the impact of climate change should be considered further through the site-specific FRA and drainage strategy. Any surface water modelling at the FRA stage should consider flood depths and hazards.
- The drainage strategy must ensure there is no increase in surface water flood risk elsewhere as a result of new development. Greenfield rates will apply, and the developer should follow the National SuDS guidance and any local guidance available from the LLFA.

- The main area of risk along the River Nene should be left free of development and used as a blue green corridor which can provide multiple benefits alongside flood risk, including ecological, social and amenity benefits.
- Topographic low spots and flow paths should be incorporated into site design and layout.
- The RoFSW map is not suitable for identifying whether an individual property will
 flood and is therefore indicative. The RoFSW map is not appropriate to act as the
 sole evidence for any specific planning or regulatory decision or assessment of
 risk in relation to flooding at any scale without further supporting studies,
 modelling, or evidence.

4 Cumulative impacts assessment and high risk catchments

4.1 Level 1 cumulative impacts assessment

A cumulative impact assessment was completed through the Huntingdonshire Level 1 SFRA (2024), which aimed to identify catchments sensitive to the cumulative impact of new development. This site is located within one catchment, namely, the Nene - Islip to tidal catchment. This catchment is ranked as a low sensitivity catchment. Planning considerations for sites at low sensitivity to the cumulative impacts of development can be found in Appendix G of the Level 1 SFRA. Cumulative impacts of development should also be considered as part of a site-specific FRA.

5 Groundwater, geology, soils, SuDS suitability

Risk of groundwater emergence is assessed in this SFRA using JBA's 5m Groundwater Emergence Map. This dataset is recommended for use by the EA in the SFRA Good Practice Guide². Figure 5-1 shows the map covering this site and the surrounding areas. Table 5-1 explains the risk classifications.

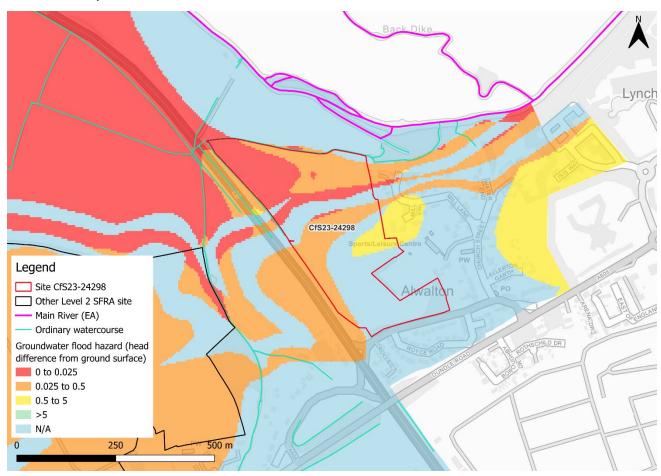


Figure 5-1: JBA 5m Groundwater Emergence Map

Risk of emergence at this site is variable. Some of the site is classified as no risk of groundwater emergence. Although, the north of the site has groundwater levels either 0 to 0.025m or 0.025 to 0.5m. There are areas in the centre and east of the site that have groundwater levels between 0.025 to 0.5m and 0.5 to 5m. Infiltration SuDS are therefore unlikely to be appropriate at this site. The site-specific FRA should further investigate groundwater levels through percolation testing in both wet and dry weather conditions across the site.

² Strategic flood risk assessment good practice guide. ADEPT. December 2021.

Table 5-1: Groundwater Hazard Classification

Groundwater head difference (m)*	Class label		
0 to 0.025	Groundwater levels are either at very near (within 0.025m of) the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to both surface and subsurface assets. Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots.		
0.025 to 0.5	Groundwater levels are between 0.025m and 0.5m below the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to surface and subsurface assets. There is the possibility of groundwater emerging at the surface locally.		
0.5 to 5	Groundwater levels are between 0.5m and 5m below the ground surface in the 100-year return period flood event There is a risk of flooding to subsurface assets, but surface manifestation of groundwater is unlikely.		
>5	Groundwater levels are at least 5m below the ground surface in the 100-year return period flood event. Flooding from groundwater is not likely.		
N/A	No risk. This zone is deemed as having a negligible risk from groundwater flooding due to the nature of the local geological deposits.		
*Difference is defined as ground surface in mAOD minus modelled groundwater table in mAOD.			

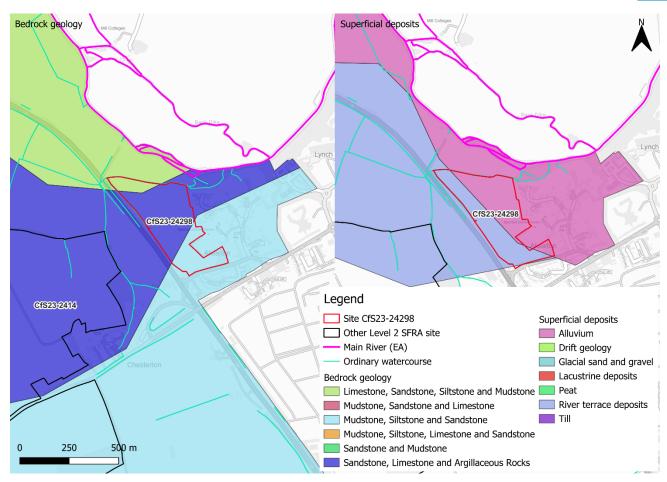


Figure 5-2: Soils and geology

6 Residual risk

Although a site may be afforded some protection from defences and / or drainage infrastructure, there is always a residual risk of flooding from asset failure i.e. breaching / overtopping of flood defences, blockages of culverts or drainage assets.

Residual risk at this site comes from the potential blockage of the culvert that flows under the A1 to the northwest of the site.

6.1 Potential blockage

A blockage of the culvert flowing underneath the A1 may cause flooding to the site, depending on the severity of the blockage and the magnitude of the flood event. Such a scenario should be investigated at the FRA stage. Culvert course and condition surveys may be required, including for consultation with the culvert owner.

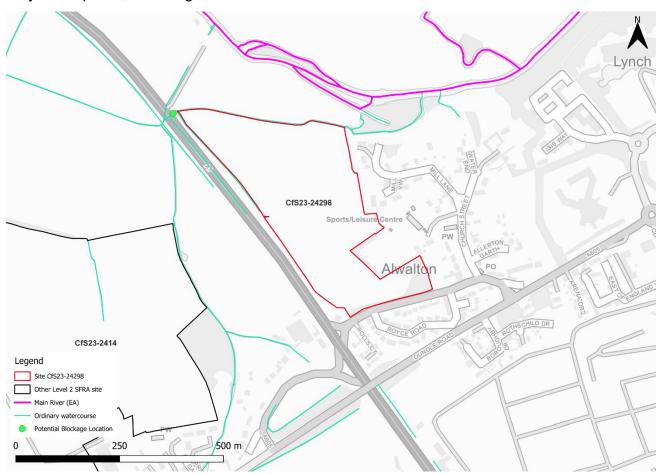


Figure 6-1: Potential blockage

6.2 Flood risk from reservoirs

The EA's Reservoir Flood Maps (RFM) (2021) show where water may go in the unlikely event of a reservoir or dam failure. Figure 6-2 shows the RFM in a 'dry day' and 'wet day' scenario. A 'dry day' scenario assumes that the water level in the reservoir is the same as

the spillway level or the underside of the roof for a service reservoir and the watercourses upstream and downstream of the reservoir are at a normal level. A 'wet day' scenario assumes a worst-case scenario where a reservoir releases water held on a 'wet day' when local rivers have already overflowed their banks.

The site is potentially at risk from Gunwade Lake. Gunwade Lake is located within the Cambridgeshire LLFA, and the undertaker of the reservoir is Anglian Water Services Ltd.

The EA's SFRA guidance states that where a proposed development site is shown to be at potential risk from reservoir failure, then an assessment into whether the reservoir design or maintenance schedule needs improving should be carried out. Expert advice may be required from an all-reservoirs panel engineer. The Council should consult Anglian Water to ascertain whether the proposed development could affect the reservoir's risk designation, it's design category or how it is operated. The Council, as category 1 responders, can access more detailed information about reservoir risk and reservoir owners using the Resilience Direct system.

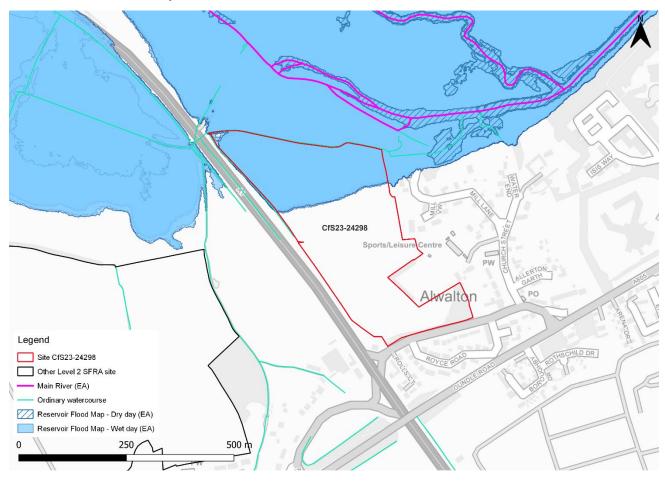


Figure 6-2: EA Reservoir Flood Map

7 Overall site assessment

7.1 Can part b) of the exception test be passed?

This site is required to pass part b) of the exception test as it is proposed for more vulnerable development and is located within Flood Zone 3a. Based on the information presented in this Level 2 SFRA, the exception test could be passed and the site allocated, assuming all more vulnerable development can take place outside of Flood Zone 3a. However, the test should be reapplied at the application stage as some flood risk information has not been available for consideration in this Level 2 SFRA, as outlined below. The test should also be reapplied if more recent information about existing or potential flood risk becomes available at application stage.

7.2 Recommendations summary

Based on the evidence presented in the Level 1 SFRA (2024) and this Level 2 SFRA:

- Updated present day and climate change modelling of the River Nene and the
 unnamed watercourse should be used to update this Level 2 SFRA at the earliest
 opportunity to provide an up-to-date strategic assessment of flood risk to this site
 and the surrounding areas in order to allocate the site.
- Risk from the ordinary watercourses should be investigated at the FRA stage. Modelling may be required.
- A detailed drainage strategy will be required for any new development, given the large area of the site. Groundwater risk should be investigated.
- The ordinary watercourses should be included within the site design and layout. Infilling of drainage ditches should be avoided.
- There is potential residual risk to the site from a blockage of the culvert beneath the A1. The reservoir owner should be consulted.
- Groundwater conditions must be investigated further through the site-specific FRA.
- Opportunities for NFM features to reduce flood risk to the site and surrounding areas should be explored at the site-specific FRA stage.
- Safe access and escape routes should be considered further to ensure safe evacuation of site users during the extreme flood event accounting for climate change.
- Were development of this site to proceed, given the proximity of this site to neighbouring site CfS23-2414, it would be prudent to formulate a strategy to develop these sites in tandem and for consultation between each developer to take place to ensure a joined-up approach for sustainable development is in place.

7.3 Site-specific FRA requirements and further work

At the planning application stage, the following should be considered:

- Full detailed flood modelling of the River Nene and the unnamed watercourse to assess up to date risk to the site.
- Further modelling to understand the impacts of climate change on fluvial and surface water flood risk to the site.
- Investigation into groundwater conditions and the production of a detailed drainage strategy.
- Further consideration of surface water flood risk, including a drainage strategy.
 Discharge rates should remain at greenfield rates at a minimum in consultation with the LLFA.
- FRA should be carried out in line with the latest versions of the NPPF; FRCC-PPG; EA online guidance; the HDC Local Plan, and national and local SuDS policy and guidelines.
- Throughout the FRA process, consultation should be carried out with, where applicable, the local planning authority; the lead local flood authority; emergency planning officers; the Environment Agency; Anglian Water; the highways authorities; and the emergency services.

8 Licencing

To cover all figures within this report:

- Contains Environment Agency information © Environment Agency and/or database right [2025]
- Contains public sector information licensed under the Open Government Licence v3.0. © Crown copyright and database rights [2025]
- HDC Ordnance Survey licence number: 100022322 [2025]
- © 2021 Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community

W

www.jbaconsulting.com

Our Offices

Limerick

Bristol Newcastle Coleshill Newport Cork Peterborough Doncaster Portsmouth Dublin Saltaire Edinburgh Skipton Exeter **Tadcaster** Thirsk Glasgow Haywards Heath Wallingford Leeds Warrington

JBA Risk
Management Inc

USA

JBA Consulting
Ireland

JBA Consult

Romania

Cambodia

Singapore

Mekong Modelling
Associates

JBA Risk Management JBA Global Resilience

JBA Consulting

0-0-0

JBA Risk Management Pte Ltd

JBPacific

Australia

Registered Office

Europe

1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom +44(0) 1756 799919 info@jbaconsulting.com www.jbaconsulting.com

Follow us on X in

Jeremy Benn Associates Limited Registered in England 3246693 JBA Group Ltd is certified to ISO 9001:2015 ISO 14001:2015 ISO 27001:2022 ISO 45001:2018

