

Huntingdonshire Level 2 Strategic Flood Risk Assessment Site Summary

Site CfS:163

Final Report

Prepared for
Huntingdonshire District
Council

Date
November 2025

Document Status

Issue date 6 November 2025

Issued to Frances Schulz

BIM reference JFI-JBA-XX-XX-RP-EN-0007

Revision P03

Prepared by Mike Williamson BSc MSc CGeog FRGS EADA

Principal Analyst

Reviewed by Laura Thompson BSc FRGS

Analyst

Authorised by Paul Eccleston BA CertWEM CEnv MCIWEM C.WEM

Technical Director

Carbon Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Accessibility

JBA aims to align with governmental guidelines on accessible documents and WGAG 2.2 AA standards, so that most people can read this document without having to employ special adaptation measures. This document is also optimised for use with assistive technology, such as screen reading software.

Contract

JBA Project Manager Mike Williamson

Address Phoenix House, Lakeside Drive, Centre Park, Warrington, WA1

1RX

JBA Project Code 2022s1322

This report describes work commissioned by Huntingdonshire District Council by an instruction via email dated 21 July 2025. The Client's representative for the contract was Frances Schulz of Huntingdonshire District Council. Mike Williamson of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of Huntingdonshire District Council in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Huntingdonshire District Council for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

JBA disclaims any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to JBA's attention after the date of the Report.

The methodology adopted and the sources of information used by JBA in providing its services are outlined in this Report. The work described in this Report was undertaken between 21 July 2025 and 6 November 2025 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate.

Acknowledgements

We would like to thank the Environment Agency, Cambridgeshire County Council for their assistance with this work.

Copyright

© Jeremy Benn Associates Limited 2025

Contents

1	Backgrour	nd	1
	1.1	Site XXX	1
2	Flood risk	from rivers and sea	5
	2.1	Existing risk	5
	2.2	Flood risk management	6
	2.3	Impacts from climate change	7
	2.4	Historic flood incidents	8
	2.5	Emergency planning	8
	2.6	Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal	9
3	Flood risk from surface water		
	3.1	Existing risk	11
	3.2	Impacts from climate change	14
	3.3	Observations, mitigation options, site suitability, sequential approach to development management - surface water	17
4	Cumulativ	e impacts assessment and high risk catchments	19
	4.1	Level 1 cumulative impacts assessment	19
5	Groundwa	ter, geology, soils, SuDS suitability	20
6	Residual r	isk	23
	6.1	Flood risk from reservoirs	23
7	Overall site	e assessment	24
	7.1	Can part b) of the exception test be passed?	24
	7.2	Recommendations summary	24
	7.3	Site-specific FRA requirements and further work	24
8	Licencing		25

	_			
 0.1	of	 \sim	1 1 1	-00
 S 1	()	(1		

Figure 1-1: Existing site location boundary	2
Figure 1-2: Aerial photography	3
Figure 1-3: Topography	4
Figure 2-1: Existing risk	5
Figure 2-2: Natural Flood Management (NFM) potential mapping	6
Figure 2-3: Flood Map for Planning 1% and 0.1% AEP defended flood events +6% (ce climate change allowance)	entral 7
Figure 2-4: EA Flood Warning Areas and Flood Alert Areas	8
Figure 2-5: Potential access and escape route	9
Figure 3-1: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)	er 12
Figure 3-2: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)	13
Figure 3-3: Medium risk event surface water flood hazard (Third generation - Risk of Flooding from Surface Water map)	14
Figure 3-4: Low risk event surface water flood extent, as a proxy for the medium risk e plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)	
Figure 3-5: Low risk event surface water flood depths, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water	er
map)	16
Figure 3-6: Low risk event surface water flood hazard, as a proxy for the medium risk of plus climate change (Third generation - Risk of Flooding from Surface Water	er
map)	17
Figure 5-1: JBA 5m Groundwater Emergence Map	20
Figure 5-2: Soils and geology	22
Figure 6-1: EA Reservoir Flood Map	23

List of Tables

Table 2-1: Existing flood risk based on percentage area of site at risk	5
Table 3-1: Existing surface water flood risk based on percentage area at risk using the)
NaFRA2 RoFSW map	11
Table 5-1: Groundwater Hazard Classification	21

1 Background

This is a Level 2 Strategic Flood Risk Assessment (SFRA) site screening report for Local Plan Site CfS:163. The content of this report assumes the reader has already consulted the 'HDC Level 1 SFRA' (2024) and read the 'HDC Level 2 SFRA Main Report' (2025) and is therefore familiar with the terminology used in this report.

1.1 Site CfS:163

- Location: Dews Bus and Coach Depot, Chatteris Road, Somersham
- Existing site use: bus depot, includes area of open greenspace
- · Existing site use vulnerability: less vulnerable
- Proposed site use: residential
- Proposed site use vulnerability: more vulnerable
- Site area (ha): 2.12
- Watercourse: Cranbrook Drain (main river)
- Environment Agency (EA) model: no detailed model available
- Summary of requirements from Level 2 SFRA scoping stage:
 - Assessment of surface water flood extent, depths and hazards
 - Assessment of all other sources of flood risk

Figure 1-1: Existing site location boundary

Figure 1-2: Aerial photography

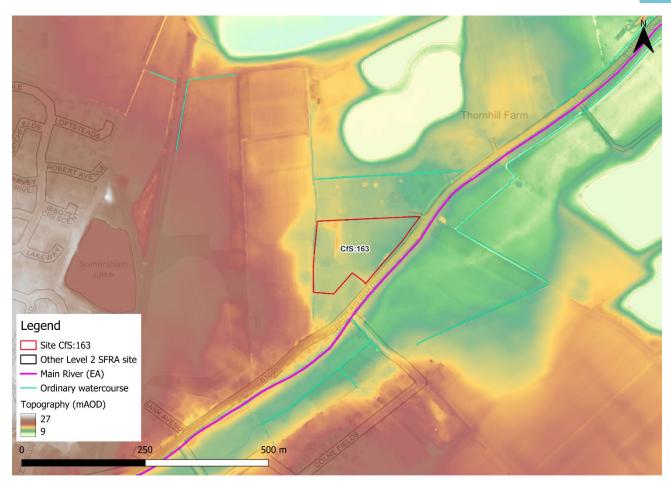


Figure 1-3: Topography

2 Flood risk from rivers and sea

2.1 Existing risk

2.1.1 Flood Map for Planning and functional floodplain

Based on the EA's Flood Map for Planning (accessed July 2025) and Flood Zone 3b (functional floodplain), as updated in this Level 2 SFRA, the percentage areas of the site within each flood zone are stated in Table 2-1 and can be viewed on Figure 2-1. This version of the Flood Map for Planning does not consider flood defence infrastructure (Section 2.2) or the impacts of climate change (Section 2.3).

The site is wholly within Flood Zone 1. There is no detailed model available for Cranbrook Drain, therefore the risk is likely based on the EA's New National Model.

Table 2-1: Existing flood risk based on percentage area of site at risk

Flood Zone 1 (% area)	Flood Zone 2 (% area)	Flood Zone 3a (% area)	Flood Zone 3b (% area)
100	0	0	0



Figure 2-1: Existing risk

2.2 Flood risk management

2.2.1 Flood defences

There are no flood defences in the vicinity of the site, according to the EA's Spatial Flood Defences dataset.

2.2.2 Working with Natural Processes

The EA's Working with Natural Processes (WwNP) dataset has been interrogated to identify opportunities for Natural Flood Management (NFM) to reduce flood risk to the site and surrounding areas. These areas are shown in Figure 2-2. Note, the WwNP mapping is broadscale and indicative, therefore further investigation will be required for any land shown to have potential for WwNP.

There may be potential flood risk alleviation to areas around the site through tree planting, particularly along the right bank of Cranbrook Drain.

Figure 2-2: Natural Flood Management (NFM) potential mapping

2.3 Impacts from climate change

2.3.1 Fluvial

The EA's SFRA guidance states that SFRAs should assess the central allowance for less, more, highly vulnerable, and water compatible development. The higher central allowance should be assessed for essential infrastructure. However, as there is no existing detailed model of Cranbrook Drain, modelling of the higher central allowance has not been possible.

The impacts of climate change on flood risk from Cranbrook Drain have been modelled by the EA through the New National Model which models the central allowance (+6% on peak river flows for the Old Bedford and Middle Level EA management catchment) for the 3.3% AEP defended, 1% AEP defended and undefended, and 0.1% AEP defended and undefended fluvial events.

The undefended events do not impact the site whereas the defended events do for the 1% AEP and 0.1% AEP events. At this stage, it is unknown why the defended extents are larger than the undefended extents. The current greenfield area of the site is shown to be at risk from the 0.1% AEP plus climate change defended event.

Figure 2-3: Flood Map for Planning 1% and 0.1% AEP defended flood events +6% (central climate change allowance)

2.3.2 Tidal

The EA's Flood Map for Planning shows the site is not at risk from tidal climate change.

2.4 Historic flood incidents

The EA's Historic Flood Map (HFM) and Recorded Flood Outlines (RFO) datasets have been considered. No historic events have been recorded on or near the site, according to these datasets.

2.5 Emergency planning

2.5.1 Flood warning

The EA operates a Flood Warning Service for properties located within a Flood Warning Area (FWA) for when a flood event is expected to occur. As shown in Figure 2-4, this site is located adjacent to a FWA, namely the River Delph west bank Flood Defences at Benwick, Chatteris and Manea FWA.

Flood alerts may be issued before a flood warning for properties located within a Flood Alert Area (FAA) to provide advance notice of the possibility of flooding. A flood alert may be issued when there is less confidence that flooding will occur in a FWA. As shown in Figure 2-4, this site is located adjacent to a FAA, namely the Middle Level of the Fens in Cambridgeshire and Norfolk FAA.

Figure 2-4: EA Flood Warning Areas and Flood Alert Areas

2.5.2 Access and escape routes

Based on available information, safe access and escape routes could likely be achieved during a flood event via Chatteris Road to the south, which is the only available access route, as shown by the orange circle in Figure 2-5. However, flood warnings and alerts should remain in place to ensure site users can be safe and evacuate the site during the 0.1% AEP fluvial event plus climate change.

Figure 2-5: Potential access and escape route

2.6 Observations, mitigation options, site suitability, sequential approach to development management - fluvial and tidal

Observations:

- The proposed development of the site would see a change in the risk classification from less vulnerable to more vulnerable, according to the NPPF.
- There is no detailed model available for Cranford Drain. The flood zones, including for climate change, are likely to be based on the EA's New National Model.
- The area of the site at risk from the 0.1% AEP defended plus climate change event should ideally be left as open greenspace. However, were this area to be developed detailed modelling should be carried out at the FRA stage to confirm risk including flood depths and hazards.

 Any development within this risk area should consider flood warning, emergency plans, and property flood resilience techniques.

Defences:

 When accounting for defences, the Flood Map for Planning 0.1% AEP plus central climate change allowance shows risk to the site. However, there are no defences within the vicinity of the site, according to the EA's Spatial Flood Defences dataset

• Mitigation:

- The site-specific FRA should develop a model of Cranbrook Drain to fully understand the onsite fluvial risk and look to include the channel and risk areas within a blue green corridor.
- Given the proximity of the site to Cranbrook Drain, a flood risk activity permit for development may be required. The type of permission required must be sought from the Environment Agency, Lead Local Flood Authority or Internal Drainage Board. For non-tidal main rivers, a flood risk activity permit may be required if the development of the site is within 8 metres of a riverbank, flood defence structure or culvert.

Access and escape:

- Safe access and escape routes must be available at times of flood and appear to be available via Chatteris Road to the south, which is the only available access route.
- EA flood warnings and alerts should continue to be in place to ensure early evacuation of site users before an extreme flood event occurs.

3 Flood risk from surface water

3.1 Existing risk

The NaFRA2 Risk of Flooding from Surface Water (RoFSW) mapping received a significant update and was published January 2025, including for surface water flood extents and depths. However, at the time of writing, the EA has confirmed that the depth information available is not structured in a way that is suitable for planning purposes. Therefore, this Level 2 SFRA considers the third generation RoFSW depth and hazard mapping in addition to the NaFRA2 extents, as agreed with the EA. Surface water depth and hazard should be modelled at the site-specific FRA stage.

3.1.1 Risk of Flooding from Surface Water - NaFRA2 extents

Based on the EA's national scale RoFSW map, as updated in January 2025, the majority of the site is at very low risk. However, there are several areas of ponding in the current bus depot in the west of the site. There are also flow paths along the western and eastern site boundaries.

Table 3-1: Existing surface water flood risk based on percentage area at risk using the NaFRA2 RoFSW map

Very low risk (% area)	Low risk (% area)	Medium risk (% area)	High risk (% area)
80	2	7	11

Figure 3-1: Surface water flood extents (NaFRA2 - Risk of Flooding from Surface Water map)

3.1.2 Risk of Flooding from Surface Water - third generation depths and hazard

Based on the EA's national scale third generation RoFSW map, medium risk flood depths are low in the ponded areas though significant along the western flow path. The medium risk flood hazard map shows the hazards to be low in the bus depot area though significant along the western flow path.

Figure 3-2: Medium risk event surface water flood depths (Third generation - Risk of Flooding from Surface Water map)

Figure 3-3: Medium risk event surface water flood hazard¹ (Third generation - Risk of Flooding from Surface Water map)

3.2 Impacts from climate change

The NaFRA2 RoFSW mapping now includes one modelled climate change scenario, the 2050s central allowance for the high, medium and low risk events. However, the upper end allowance on peak rainfall for the 2070s should be assessed in SFRAs. Therefore, at the time of writing, the available national surface water climate change mapping is unsuitable for consideration in development planning. This Level 2 SFRA considers the low risk surface water event as a conservative proxy for the medium risk event plus climate change, as agreed with the EA. The impact of climate change on surface water flood risk should be fully accounted for at the site-specific FRA stage.

Based on the information available, surface water flood risk to the site may increase with climate change. The ponded areas in the depot are shown to increase in size though depths and hazards remain low. This risk along the eastern boundary increases significantly though the western boundary flow path remains similar to present day.

The potential access and escape route remains at very low risk.

¹ Based on Section 7.5 Hazard rating. What is the Risk of Flooding from Surface Water map? Report version 2.0. April 2019. Environment Agency

Figure 3-4: Low risk event surface water flood extent, as a proxy for the medium risk event plus climate change (NaFRA2 - Risk of Flooding from Surface Water map)

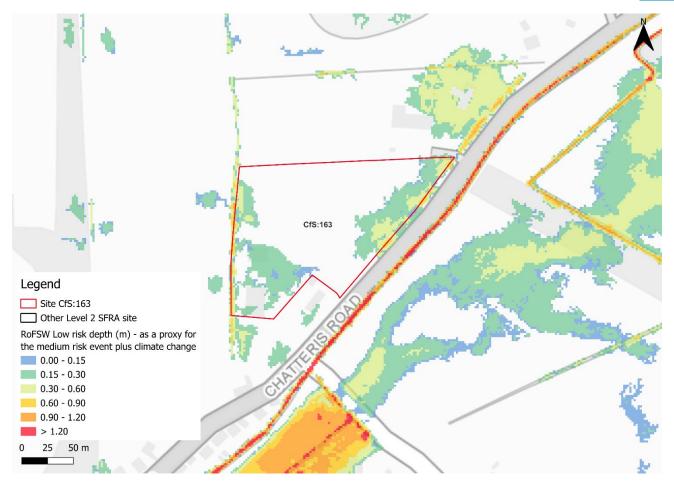


Figure 3-5: Low risk event surface water flood depths, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)



Figure 3-6: Low risk event surface water flood hazard, as a proxy for the medium risk event plus climate change (Third generation - Risk of Flooding from Surface Water map)

3.3 Observations, mitigation options, site suitability, sequential approach to development management - surface water

- Current risk to the site is predominantly very low, with 80% of the site being at very low surface water flood risk. Surface water risk in the high and medium risk events is confined to areas of ponding within the bus depot and along the two flow paths.
- The effects of climate change on surface water have not been modelled for this SFRA, however the low risk surface water event has been used as a proxy for the medium risk event plus climate change. Risk is shown to increase in extent though not depth and hazard, in the main.
- Surface water flood depths, hazards, including for the impact of climate change should be considered further through the site-specific FRA and drainage strategy. Any surface water modelling at the FRA stage should consider flood depths and hazards.
- Were development plans to proceed, a full detailed drainage strategy would be required to ensure there is no increase in surface water flood risk elsewhere as a result of new development. Greenfield rates will apply to the east of the site which is currently open greenspace and the developer should follow the National SuDS

- guidance and any local guidance available from the LLFA. Surface water modelling based on layout plans and detailed design may be required through consultation with the LLFA.
- Safe access and escape appear to be possible when accounting for climate change.
- The RoFSW map is not suitable for identifying whether an individual property will flood and is therefore indicative. The RoFSW map is not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment of risk in relation to flooding at any scale without further supporting studies, modelling, or evidence.
- The LLFA recommends the existing flow paths on site are considered carefully in the design of any development.

4 Cumulative impacts assessment and high risk catchments

4.1 Level 1 cumulative impacts assessment

A cumulative impact assessment was completed through the Huntingdonshire Level 1 SFRA (2024), which aimed to identify catchments sensitive to the cumulative impact of new development. This site is located within one catchment, namely, the Middle Level catchment. This catchment is ranked as a medium sensitivity catchment. Planning considerations for sites at medium sensitivity to the cumulative impacts of development can be found in Appendix G of the Level 1 SFRA. Cumulative impacts of development should also be considered as part of a site-specific FRA.

5 Groundwater, geology, soils, SuDS suitability

Risk of groundwater emergence is assessed in this SFRA using JBA's 5m Groundwater Emergence Map. This dataset is recommended for use by the EA in the SFRA Good Practice Guide². Figure 5-1 shows the map covering this site and the surrounding areas. Table 5-1 explains the risk classifications.

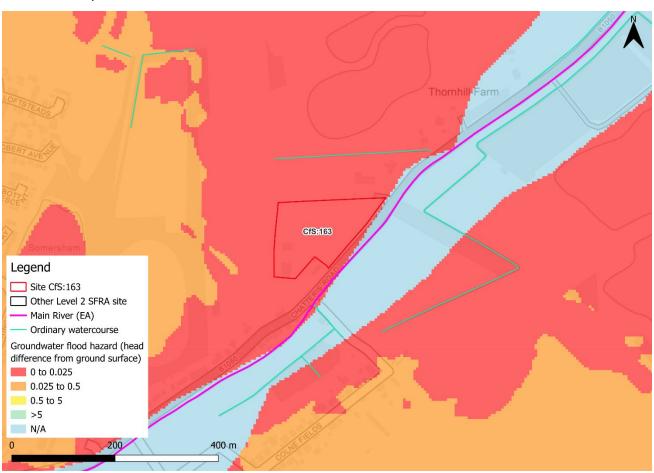


Figure 5-1: JBA 5m Groundwater Emergence Map

The whole site is at significant risk from groundwater emergence. Infiltration SuDS are therefore unlikely to be appropriate at this site.

The site is shown to have groundwater levels at or very near (within 0.025m of) the ground surface in the 100-year return period flood event. There is a risk of groundwater flooding to both surface and subsurface assets. Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots, such as in the

² Strategic flood risk assessment good practice guide. ADEPT. December 2021.

existing bus depot area. The site-specific FRA should further investigate groundwater levels through percolation testing in both wet and dry weather conditions across the site.

Table 5-1: Groundwater Hazard Classification

Groundwater head difference (m)*	Class label		
0 to 0.025	Groundwater levels are either at very near (within 0.025m of) the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to both surface and subsurface assets. Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots.		
0.025 to 0.5	Groundwater levels are between 0.025m and 0.5m below the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to surface and subsurface assets. There is the possibility of groundwater emerging at the surface locally.		
0.5 to 5	Groundwater levels are between 0.5m and 5m below the ground surface in the 100-year return period flood event There is a risk of flooding to subsurface assets, but surface manifestation of groundwater is unlikely.		
>5	Groundwater levels are at least 5m below the ground surface in the 100-year return period flood event. Flooding from groundwater is not likely.		
N/A	No risk. This zone is deemed as having a negligible risk from groundwater flooding due to the nature of the local geological deposits.		
*Difference is defined as ground surface in mAOD minus modelled groundwater table in mAOD.			

Figure 5-2: Soils and geology

6 Residual risk

Although a site may be afforded some protection from defences and / or drainage infrastructure, there is always a residual risk of flooding from asset failure i.e. breaching / overtopping of flood defences, blockages of culverts or drainage assets.

Based on available information, there does not appear to be any residual risk to this site. However, consideration should be given at the FRA stage to the fact that the site is shown to be at risk in the EA's Flood Map for Planning defended climate change scenarios.

6.1 Flood risk from reservoirs

The EA's Reservoir Flood Maps (RFM) (2021) show where water may go in the unlikely event of a reservoir or dam failure. Figure 6-1 shows the RFM in a 'dry day' and 'wet day' scenario. A 'dry day' scenario assumes that the water level in the reservoir is the same as the spillway level or the underside of the roof for a service reservoir and the watercourses upstream and downstream of the reservoir are at a normal level. A 'wet day' scenario assumes a worst-case scenario where a reservoir releases water held on a 'wet day' when local rivers have already overflowed their banks.

The site is shown to not be at risk from reservoir failure.

Figure 6-1: EA Reservoir Flood Map

7 Overall site assessment

7.1 Can part b) of the exception test be passed?

This site is not required to pass part b) of the exception test as it is not located within Flood Zone 3a, however it must still be proven that the development can be safe for its lifetime, which is 100 years for residential development.

7.2 Recommendations summary

Based on the evidence presented in the Level 1 SFRA (2024) and this Level 2 SFRA:

- It should be appropriate to develop this site for more vulnerable purposes given its location within Flood Zone 1.
- However, the New National Model shows the site to be at risk in the future due to climate change. In the absence of detailed modelling, the risk area should ideally be left free of development. If developed, appropriate flood warning, emergency plans, and property flood resilience techniques should be considered.
- A detailed model should be developed for Cranbrook Drain, including appropriate modelling of climate change to more robustly confirm risk.
- A detailed drainage strategy will be required for any new development, given the areas of ponding, flow routes, and increased risk from climate change.
- Groundwater conditions must be fully investigated through the site-specific FRA.
- Wider opportunities for NFM features to reduce flood risk to the site in the future through tree planting in the surrounding areas should be explored at the sitespecific FRA stage.

7.3 Site-specific FRA requirements and further work

At the planning application stage, the following should be considered:

- Detailed flood modelling of Cranbrook Drain, in consultation with the EA, to robustly define existing and future fluvial flood risk to the site.
- Detailed investigations into groundwater conditions through ground survey and percolation testing.
- Further consideration of surface water flood risk, including a drainage strategy.
 Discharge rates should remain at greenfield rates at a minimum in the east of the site where there is current open greenspace. The LLFA should be consulted.
- The FRA should be carried out in line with the latest versions of the NPPF;
 FRCC-PPG; EA online guidance; the HDC Local Plan, and national and local SuDS policy and guidelines.
- Throughout the FRA process, consultation should be carried out with, where applicable, the local planning authority; the lead local flood authority; emergency planning officers; the Environment Agency; Anglian Water; the highways authorities; and the emergency services.

8 Licencing

To cover all figures within this report:

- Contains Environment Agency information © Environment Agency and/or database right [2025]
- Contains public sector information licensed under the Open Government Licence v3.0. © Crown copyright and database rights [2025]
- HDC Ordnance Survey licence number: 100022322 [2025]
- © 2021 Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community

www.jbaconsulting.com

Our Offices

Limerick

Bristol Newcastle Coleshill Newport Cork Peterborough Doncaster Portsmouth Dublin Saltaire Edinburgh Skipton Exeter **Tadcaster** Thirsk Glasgow Haywards Heath Wallingford Leeds Warrington

JBA Risk
Management Inc
USA

JBA Consulting Ireland

JBA Consult Europe Mekong Modelling
Associates
Romania

JBA Risk Management Pte Ltd

JBPacific

JBA Consulting

0-0-0

JBA Risk Management JBA Global Resilience

Singapore

Registered Office

1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom +44(0) 1756 799919 info@jbaconsulting.com www.jbaconsulting.com

Follow us on X in

Jeremy Benn Associates Limited Registered in England 3246693

Cambodia_

JBA Group Ltd is certified to ISO 9001:2015 ISO 14001:2015 ISO 27001:2022 ISO 45001:2018

