

Air Quality Annual Status Report (ASR) for the year 2016

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

December 2017

Local Authority Officer	Dave Bass/Claire Braybrook
Department	Environment Protection – Community
Address	Huntingdonshire District Council Pathfinder House St Mary's Street Huntingdon PE29 3TN
Telephone	01480 388 284
E-mail	Claire.braybrook@huntingdonshire.gov.uk
Report Reference number	ASR 2017
Date	December 2017

Approved by	Position
Chris Stopford	Head of Community

Executive Summary: Air Quality in Our Area

The Environment Act 1995 places a duty on Local Authorities to monitor, assess and take action to improve local air quality under the statutory process of Local Air Quality Management (LAQM). The LAQM system now places greater emphasis on action planning to improve air quality and includes local measures as part of EU reporting requirements, as well as requiring the completion of an air quality Annual Status Report (ASR). This report forms Huntingdonshire District Councils 2017 ASR and is a review of air quality in the district for the year 2016.

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1,2}. The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³.

This ASR relates to data gathered between 1st January and 31st December 2016.

Air Quality in Huntingdonshire

Nitrogen Dioxide (NO₂) is the only pollutant that currently exceeds the objective level within the district. The main source of NO₂ in Huntingdonshire is from vehicle emissions and this is predominately caused by the A14 and to a lesser extent the A1 that runs straight through the district. However, local traffic within the market towns is also causing some elevated levels.

Huntingdonshire currently has four Air Quality Management Areas (AQMA's).

- 1. Huntingdon,
- 2. St Neots,
- 3. Brampton, and
- 4. A14 Hemingford to Fenstanton.

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

As a whole, the level of NO₂ has fallen in the last five years and is mostly below the annual limit. However, Huntingdonshire is still experiencing a small hotspot which is showing readings above the annual limit and this is mostly linked with the A14.

Actions to Improve Air Quality

The re-routing of the A14 is currently progressing and this will move the road away from large residential areas. Predictions indicate that all areas currently in an AQMA will see their NO₂ and PM₁₀ levels significantly reduce once the scheme has been built. While some areas of the district will increase slightly, predictions have shown that these will all remain below EU limit values. Huntingdonshire District Council took a leading role in securing a satisfactory result for our residents.

Due to consistent compliance of the diffusion tubes within the St Neots AQMA, Huntingdonshire District Council is considering revoking the AQMA. A detailed modelling assessment of NO₂ concentrations has been undertaken and will be submitted to DEFRA in support of the proposal.

Huntingdonshire District Council has been advised that Highways England are now starting to investigate the improvement of the A428 which runs south of St Neots and directly affects traffic flows within St Neots. Huntingdonshire District Council will continue to liaise with Highways England on assessing the impact of the scheme on St Neots.

Conclusions and Priorities

The re-routed A14 will significantly decrease the pollution levels currently experienced by many residents. Huntingdonshire District Council will continue to liaise with Highways England regarding the progress of this scheme, as well as the proposed upgrade of the A428, to minimise any impact on air quality.

Huntingdonshire is currently a growth area and our main challenge is to ensure that this growth does not cause any exceedances of AQ objectives.

Local Engagement and How to get Involved

You can help to improve your local air quality by reducing the number of car journeys undertaken, car sharing, using public transport, walking or cycling wherever possible, switching off car engines when stationary, purchasing energy efficient goods, making

your home more energy efficient and choosing to purchase a low emission car. There is further information on our website under 'Sustainability and greener living' http://www.huntingdonshire.gov.uk/. The energy savings trust can also provide further advice at http://www.energysavingtrust.org.uk/.

Table of Contents

E)	cecut	ive S	ummary: Air Quality in Our Area	ا
	Air Q	uality	in Huntingdonshire	i
	Actio	ns to	Improve Air Quality	ii
	Conc	lusior	ns and Priorities	ii
	Loca	l Enga	agement and How to get Involved	ii
1	L	ocal /	Air Quality Management	1
2	A	ction	s to Improve Air Quality	2
	2.1		Quality Management Areas	
	2.2		gress and Impact of Measures to address Air Quality in Huntingdonshire	
	Distri		uncil	4
	2.3		_{2.5} – Local Authority Approach to Reducing Emissions and/or	
	Conc		tions	10
3			ality Monitoring Data and Comparison with Air Quality	
O	bject	ives a	and National Compliance	11
	3.1	Sur	mmary of Monitoring Undertaken	11
	3.	1.1	Automatic Monitoring Sites	
	3.	1.2	Non-Automatic Monitoring Sites	
	3.2	Ind	ividual Pollutants	12
	3.2	2.1	Nitrogen Dioxide (NO ₂)	12
	3.2	2.2	Particulate Matter (PM ₁₀)	13
	3.2	2.3	Particulate Matter (PM _{2.5})	13
Αį	pen	dix A	: Monitoring Results	14
Αį	pen	dix B	: Full Monthly Diffusion Tube Results for 2016	29
Αį	pen	dix C	: Supporting Technical Information / Air Quality Monitoring	
Da	ata Q	A/QC	<u>, </u>	32
Αı	pen	dix D	: Map(s) of Monitoring Locations and AQMAs	57
	_		: Summary of Air Quality Objectives in England	
	_		Terms	
		,		00
Li	st of	Table	es es	
			Declared Air Quality Management Areas Progress on Measures to Improve Air Quality	

Table A.1 - Details of Automatic Monitoring Sites14	1
Table A.2 - Details of Non- Automatic Monitoring Sites15	
Table A.3 – Annual Mean NO ₂ Monitoring Results18	
Table A.4 – 1-Hour Mean NO ₂ Monitoring Results25	
Table A.5 – Annual Mean PM ₁₀ Monitoring Results25	
Table A.6 – 24-Hour Mean PM ₁₀ Monitoring Results27	
Table A.7 – PM _{2.5} Monitoring Results28	
Table B.1 – NO ₂ Monthly Diffusion Tube Results – 2016	
Table E.1 – Air Quality Objectives in England64	
List of Figures	
Figure A.1 – Trends in Annual Mean NO ₂ Concentrations22	2
Figure A.2 – Trends in Annual Mean PM ₁₀ Concentrations	
Figure A.3 – Trends in Number of 24-Hour Mean PM ₁₀ Results >50µg/m³27	
Figure A.4 – Trends in Annual Mean PM _{2.5} Concentrations28	
Figure C.1 - Diffusion Tube Bias Adjustment3	
Figure C.2 - PFH DT 1 distance correction calculation34	4
Figure C.3 - PFH DT 2 distance correction calculation34	4
Figure C.4 - PFH DT 3 distance correction calculation34	4
Figure C.5 - Third party QA/QC reports35	
Figure C.6 - AQMS service reports41	
Figure D.1 - Map indicating location of Automatic NO_2 , PM_{10} and $PM_{2.5}$ monitor57	•
Figure D.4 - Map indicating location of non automatic (Diffusion Tube)	
NO ₂ monitoring locations59	9
Figure D.5 - Huntingdon AQMA Diffusion Tube NO ₂ monitoring locations60	
Figure D.2 - Mapvshowing location of Automatic NO_2 , PM_{10} and $PM_{2.5}$ monitor58 Figure D.3 - Close up of location of Automatic NO_2 , PM_{10} and $PM_{2.5}$ monitor58	3

1 Local Air Quality Management

This report provides an overview of air quality in Huntingdonshire District Council during 2016. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Huntingdonshire District Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E. in Appendix E.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

AQMAs are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of compliance with the objectives.

A summary of AQMAs declared by Huntingdonshire District Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at

http://www.huntingdonshire.gov.uk/environmental-issues/noise-nuisance-pollution/air-quality/. Alternatively maps indicating all monitoring locations relative to these AQMA's are also available in Appendix D.

Table 2.1 – Declared Air Quality Management Areas

AQMA Name	Date of Declaration	Pollutants and Air Quality	City / Town	One Line Description	Is air quality in the AQMA influenced by roads controlled by	Level of Exceedance (maximum monitored/modelled concentration at a location of relevant exposure)		Action Plan (Inc. date of publication)
		Objectives			Highways England?	At Declaration	Now	
AQMA Area 1: Huntingdon	16 th November 2005 - amended 29 th October 2007	NO₂ annual mean	Huntingdon	An area encompassing approximately 2831 domestic properties affected by the A14, A141, B1044, B1514 and Huntingdon Inner Ring Road.	Yes		46ug/m³ at Pathfinder House (PFH 2)	Cambridgeshire Joint Air Quality Action Plan
AQMA Area 2: St Neots	16 th November 2005 - amended 29 th October 2007	NO ₂ annual mean	St Neots	An area encompassing approximately 115 domestic properties affected by local traffic in the town centre.	No		31ug/m³ at 8- 10 High Street (St Neots 5)	Cambridgeshire Joint Air Quality Action Plan
AQMA Area 3: Brampton	1 st September 2006 - amended 29 th October 2007	NO₂ annual mean	Brampton	An area encompassing approximately 82 domestic properties affected by the A14.	Yes		27ug/m³ at 1 Laws Crescent (Brampton 3)	Cambridgeshire Joint Air Quality Action Plan
AQMA Area 4: Hemingford to Fenstanton	1 st September 2006	NO ₂ annual mean	Fenstanton	An area encompassing approximately 62 domestic properties affected by the A14.	Yes		31ug/m³ at Hilton Road (Fenstanton 1)	Cambridgeshire Joint Air Quality Action Plan

[☒] Huntingdonshire District Council confirm the information on UK-Air regarding their AQMA(s) is up to date

2.2 Progress and Impact of Measures to address Air Quality in Huntingdonshire District Council

Defra's appraisal of last year's ASR concluded the following:

DEFRA conclusions	Huntingdonshire District Council comments
The ASR report highlights that the proposed re-routing of the A14 is expected to make a significant impact to relieve the Huntingdonshire AQMA's in near proximity to the route of the current A14. We recognise the potential significance of this measure when completed. The joint action plan with neighbouring authorities is also recognised as an example of best practice.	Noted and we are still in discussions regarding a new joint action plan with the rest of Cambridgeshire.
Current monitoring also suggests there is only a single exceedance point within a current AQMA (Huntingdon 2), whilst three other measurements (PFH1,2,3) appear to be outside of the declared Hemingford to Fenstanton AQMA boundary, contrary to the details within Table A2. The measurements also do not represent relevant exposure, and have not been corrected.	The original monitoring locations submitted were incorrect. This has been rectified. PFH 1, 2 & 3 are located within the Huntingdon AQMA and can be seen on the associated map in Appendix D.
Please can the Council verify the positions of these monitoring locations (PHF1,2,3) in relation to the declared AQMA boundary, and provide corrected results for distance.	The original monitoring locations submitted were incorrect so this has been rectified.
Presentation of monitoring results within reports presented to Defra for comparison to objectives requires the application of all relevant correction factors. There is no evidence that the Council has applied	Distance corrections have been applied where necessary in line with good practice.

distance corrections in this report or other recent reports, where monitoring sites are not representative of relevant exposure. Please refer to the procedures for applying this correction to future monitoring results, as described in the latest version of the LAQM Technical Guidance TG(16). Failure to apply the appropriate distance correction factors can lead to a significant over prediction of final concentrations. All monitoring sites should be clearly labelled These have been included. and indexed in relation to location of AQMAs. It is most helpful if maps of monitoring sites are presented within maps showing AQMA boundaries. It is not completely clear if there are still further monitoring locations with exceedances outside of current AQMAs. The results presented within the ASR Huntingdonshire District Council is suggest that AQMA's 1,2 and 3 may be currently undertaking modelling of AQMA considered for revocation, whilst the 2. At present AQMA's 1, 3 & 4 will be boundary and status of AQMA4 should be reassessed once the A14 has been reviewed further to the comments above. upgraded unless further resources are provided to allow modelling of AQMA 3 and 4. It is not currently considered a valid use of resources to model AQMA 1 until the A14 has been relocated. In light of these comments, the Council may Huntingdonshire District Council has wish to consider reviewing the current changed some monitoring locations for monitoring strategy, alongside the decisions future year's assessment. on revocation, to ensure all locations of relevant exposure have been duly considered.

Huntingdonshire District Council has taken forward a number of direct measures during the current reporting year of 2016 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2.

Key completed measures are:

Measurement 1: The A14 upgrade is currently being constructed with an estimated completion date of 2020.

Measurement 2: Implementation of air quality policies in local plan is currently on going.

Measurement 3: Development of an effective freight partnership. Now that the A14 will be moved away from the residential areas it is not expected that freight will cause a significant issue within Huntingdonshire.

Measurement 4: Inclusion of Huntingdonshire in the Quality Bus Partnership. Cambridgeshire County Council has so far not extended the QBP to outside Cambridge.

Measurement 5: The guided bus route is complete and operational.

Measurement 6: Smart traffic lights at St Neots have been installed and are operational.

Huntingdonshire District Council expects the following measures to be completed over the course of the next reporting year:

It is hoped the Local Plan will steer development towards installing electric car charging points in all new buildings and car parks in order to encourage the use of electrically powered vehicles, in line with National Planning Policy.

A main priority for 2017 for Huntingdonshire District Council was to fill the vacant (Since August 2017) post of Environmental Protection Officer (Air Quality) and repair or replace the faulty automatic monitoring equipment. The new officer took up the post in November and is currently in discussions regarding all of the AQ monitoring equipment.

Huntingdonshire District Council anticipates that the measures stated above and in Table 2.2 will achieve compliance in AQMA 1 Huntingdon, AQMA 2 St Neots and AQMA 4 Hemingford to Fenstanton.

Whilst the measures stated above and in Table 2.2 will help to contribute towards the continued compliance of AQMA 3 Brampton, Huntingdonshire District Council anticipates that further additional measures not yet prescribed may be required in subsequent years, such as a realignment of the A1 duel carriageway and by-passing the village of Brampton, to maintain compliance and enable the revocation of AQMA 3 in Brampton.

Table 2.2 – Progress on Measures to Improve Air Quality

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completion Date	Comments
1	Re-routing of A14 away from settlements	Traffic Management	Strategic highway improvements	Highways England	Current	End of 2016	Monitoring should indicate a reduction	AQMA's 1, 3 & 4	Scheme has been approved	2020	Expected to improve all A14 AQMA's.
2	Implementation of air quality policies in the local plan.	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	Huntingdonshire District Council	Ongoing	Ongoing	N/A	All	Discussions have occurred with the LPA	On completion of Local Plan	Ongoing
3	Development of an effective freight partnership	Freight and Delivery Management	Other	Unknown	Unknown	Unknown	N/A	All	Unknown	Unknown	Now the A14 improvement has been agreed and Highways England have opened communication on improving the A428 it is unknown if an effective fright partnership would have any significant effect. This will be re-evaluated once changes have been monitored.
4	Inclusion of Huntingdonshire in the Quality Bus Partnership	Alternatives to private vehicle use	Other	Cambridgeshire County Council	Ongoing	Unknown	N/A	All	None	None	At present CCC do not consider that it is feasible to run the QBP outside of the city of Cambridge. This is something we will continue to consider.

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA		Estimated Completion Date	Comments
5	Completion and opening of Cambridgeshire Guided Busway	Transport Planning and Infrastructure	Bus route improvements	Cambridgeshire County Council	Completed	Completed	Unknown	All	Completed	Completed	The guided busway was opened in August 2011 from Cambridge Huntingdon and extended to Peterborough in July 2012.
6	Change to traffic- light system in St Neots High street as specified in the St Neots Markets Town Strategy	Traffic Management	Strategic highway improvements	Cambridgeshire County Council	Completed	Completed	AQ monitoring indicates a reduction	2	Completed 2013	Completed 2013	Modelling now completed to demonstrate AQ limits are being met and HDC to apply to revoke the AQMA

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM_{2.5} has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Huntingdonshire District Council is taking the following measures to address PM_{2.5}.

- We expect that the upgrade to the A14 which moves the trunk road away from the major residential areas will reduce PM_{2.5} significantly.
- In 2014 Huntingdonshire District Council joined with Public Health England and the other Cambridgeshire authorities to develop the transport and health joint strategic needs survey which focused on PM_{2.5} from transport, see http://www.cambridgeshireinsight.org.uk/file/2552/download
- Huntingdonshire District Council is intending to review and update the Council's Air Quality Action Plan.
- Liaising with the Local Planning Authority and developers requesting pre-app advice, to ensure air quality mitigation measures are considered for large developments to minimise any impact.
- Advising planning conditions to require a Construction Environmental Management Plan when necessary, in order to control dust.
- HDC have a PM_{2.5} monitor and a priority for the new officer is to ensure this is operating and maintained correctly.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

This section sets out what monitoring has taken place and how it compares with objectives.

Overall the NO₂ results continue to indicate a mostly decreasing trend for both inside and outside the AQMAs; however many of the 2016 results appear to be slightly higher than 2015. This is not just linked to roadside locations but also rural and suburban backgrounds demonstrating the results are slightly variable. The same is true of PM₁₀, whilst PM_{2.5} results show a slight fall in 2016 compared to 2015.

Huntingdonshire District Council is preparing to submit information to Defra in order to revoke the St Neots AQMA. The air quality monitoring results over the past few years within the other AQMA's have also indicated a reduction in NO₂, with the AQ objective being met and therefore further consideration will be given to these in order to determine if there is sufficient evidence for their revocation.

3.1.1 Automatic Monitoring Sites

Huntingdonshire District Council undertook automatic (continuous) monitoring at one site during 2016. Table A.1 in Appendix A shows the details of the site.

National monitoring results are available at https://uk-air.defra.gov.uk/interactive-map. Maps showing the location of the monitoring site are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix D.

There is some concern regarding the operation of the NO₂ monitor and the accuracy of the results, increasing uncertainty. The new Environmental Protection Officer will be investigating this, and a further update will be provided within the 2017 ASR.

3.1.2 Non-Automatic Monitoring Sites

Huntingdonshire District Council undertook non- automatic (passive) monitoring of NO₂ at 44 sites during 2016. Table A.2 in Appendix A shows the details of the sites.

Maps showing the location of the monitoring sites are provided in <u>Appendix D</u>. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in <u>Appendix C</u>.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, "annualisation" and distance correction. Further details on adjustments are provided in <u>Appendix C</u>.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.3 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of 40µg/m³.

For diffusion tubes, the full 2016 dataset of monthly mean values is provided in Appendix B.

Table A.4 in Appendix A compares the ratified continuous monitored NO_2 hourly mean concentrations for the past 5 years with the air quality objective of $200\mu g/m^3$, not to be exceeded more than 18 times per year.

Both the automatic monitor and diffusion tube network achieved greater than 75% data capture and therefore no annualisation was required.

Table A3 regarding the annual mean NO_2 monitoring results, indicates that three diffusion tubes exceeded the AQ objective and a further one was within 10% of it. The three that exceeded (PFH 1 (45.1 μ g/m³), PFH 2 (46.1 μ g/m³), and PFH 3 (44.8 μ g/m³)) are all located at Pathfinderhouse in Huntingdon, co-located on the continious AQ monitor, which indicated a level of 39.4 μ g/m³. As discussed earlier the continous monitor requires further investigation to check its operation. The diffusion tube within 10% of the AQ objective was located in Goerge Street, Huntingdon (Huntingdon 3) and had a result of 39.9 μ g/m³. This location is at the nearest receptor so no distance calculation was required. The Pathfinder House location is not representative of the nearest receptor and therefore a distance calculation was undertaken utilising the Defra calculator, the results of which are

shown in table B1. The calculations and additional information regarding this can be found in Appendix C.

There were no annual means greater than 60 μ g/m³, indicating that an exceedance of the 1-hour mean objective was unlikely. The 3 diffusion tube exceedances were at a location point within an existing AQMA and these can be seen in Appendix D.

3.2.2 Particulate Matter (PM₁₀)

Table A.5 in Appendix A compares the ratified and adjusted monitored PM_{10} annual mean concentrations for the past 5 years with the air quality objective of $40\mu g/m^3$. Figure A.2 demonstrates this in graph format.

Table A.6 and Figure A.3 in Appendix A compare the ratified continuous monitored PM₁₀ daily mean concentrations for the past 5 years with the air quality objective of 50µg/m³, not to be exceeded more than 35 times per year.

The results indicate that these AQ objectives have been met at the monitoring location.

3.2.3 Particulate Matter (PM_{2.5})

Table A.7 in Appendix A presents the ratified and adjusted monitored $PM_{2.5}$ annual mean concentrations for the past 5 years. Huntingdonshire District Council has been monitoring $PM_{2.5}$ since 2014 and each year there has been a slight reduction in the levels measured. This is demonstrated in Figure A.4.

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Monitoring Technique	Distance to Relevant Exposure (m)	Distance to kerb of nearest road (m) ⁽²⁾	Inlet Height (m)	
		NO ₂			Chemiluminescent						
PFH	Huntingdon	Roadside	524102	271540	PM ₁₀	YES	Beta Attenuation	3	7	2.5	
					PM _{2.5}		Beta Attenuation				

Notes:

- (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).
- (2) N/A if not applicable.

Table A.2 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Tube collocated with a Continuous Analyser?	Height (m)
St Neots 1	The Paddocks	Kerbside	517869	260132	NO ₂	No	22	22	No	3
St Neots 3	71 Avenue Road	Urban Background	518925	260503	NO ₂	No	4	1	No	3
St Neots 4	20 Harland Road	Urban Background	518489	260871	NO ₂	No	3	1	No	3
St Neots 5	8-10 High Street (Post Office)	Kerbside	518323	260263	NO ₂	Yes	0	1	No	3
St Neots 6	35 High Street (Traffic lights)	Kerbside	518433	260321	NO ₂	Yes	0	1	No	3
St Neots 7	17 Arundel Crescent	Suburban	518424	258556	NO ₂	No	0	17	No	1.75
St Neots 9	5 Duchess Close	Suburban	516370	259514	NO ₂	No	3	5 (24m to trunk road)	No	3
Southoe 1	2 Lees Lane	Roadside	518714	264308	NO ₂	No	24	2 (14m to trunk road)	No	1.75
Buckden 1	6 Perry Road	Roadside	518981	267370	NO ₂	No	0	12 (10m to trunk road)	No	1.75
Buckden 2	4 High Street (Roundabout)	Roadside	519082	267433	NO ₂	No	0	1 (35m to trunk road)	No	1.75
Buckden 3	34 High Street (shop)	Roadside	519161	267624	NO ₂	No	0	1	No	2
Buckden 4	11 Taylors Lane	Roadside	519197	267955	NO ₂	No	3	1	No	3
Brampton 1	RAF Brampton (Sparrow Close)	Roadside	518981	267370	NO ₂	No	10	0.5	No	3

Brampton 2	RAF Brampton - Stokemans Way	Roadside	519082	267433	NO ₂	No	10	1.5	No	3
Brampton 3	1 Laws Crescent	Roadside	519161	267624	NO ₂	Yes	32	2	No	3
Brampton 4	25 Dorling Way	Roadside	519197	267955	NO ₂	No	6	1.5	No	3
Brampton 5	7 Hansell Road	Roadside	518981	267370	NO ₂	No	18	0.5	No	3
Brampton 7	52 Elizabethan Way	Suburban	519874	270948	NO ₂	No	7	1.5	No	3
A1	Grafham Road Cottages	Suburban	519756	269900	NO ₂	No	23	0.5 (40m to trunk road)	No	1.5
Catworth 1	1 Thrapston Road	Rural	508409	274876	NO ₂	No	42	42 (42m to trunk road)	No	3
PFH 1	Pathfinder House	Roadside	524102	271540	NO ₂	Yes	8	6	Yes	3.6
PFH 2	Pathfinder House	Roadside	524102	271540	NO ₂	Yes	8	6	Yes	3.6
PFH 3	Pathfinder House	Roadside	524102	271540	NO ₂	Yes	8	6	Yes	3.6
Huntingdon 1	23 Lodge Close	Suburban	523177	271627	NO ₂	No	3	2	No	3
Huntingdon 2	19 Nursery Road	Kerbside	524198	271949	NO ₂	Yes	0	1	No	1.75
Huntingdon 3	6 George Street	Kerbside	523661	271802	NO ₂	Yes	0	1	No	3
Huntingdon 4	1 St Peters Road	Kerbside	523435	272464	NO ₂	Yes	3	1	No	3
Huntingdon 5	18 Blethan Drive	Roadside	522293	272909	NO ₂	Yes	3	2	No	3
Huntingdon 6	40 Hartford Road	Roadside	524274	271939	NO ₂	Yes	4	2	No	3

Huntingdon 7	6 Brampton Road	Roadside	523432	271760	NO ₂	Yes	10	2	No	3
Godmanchester 1	25 Cambridge Villas	Roadside	525319	270571	NO ₂	No	3	12 (34m to trunk road)	No	3
Wood Green Animal Shelter	Goat enclosure	Rural	526250	268264	NO ₂	No	0	235	No	3
Fenstanton 1	Hilton Road	Roadside	531427	268397	NO ₂	Yes	20	2 (20m to trunk road)	No	3
Fenstanton 2	20 Conington Road	Roadside	531770	268215	NO ₂	Yes	14	2 (23m to trunk road)	No	3
Fenstanton 3	1 Pear Tree Close	Rural	531063	268063	NO ₂	No	6	1.5	No	3
St Ives 1	2 The Pound	Urban Background	531206	272334	NO ₂	No	5	1	No	3
St Ives 2	59 Greenfields	Suburban	530850	270286	NO_2	No	6	1.5	No	3
Ramsey 1	5 Blenheim Road	Urban Background	528433	284936	NO ₂	No	4	2	No	3
Hilton	The Paddocks	Suburban	528961	266718	NO ₂	No	2.5	3	No	3
Stibbington 1	7 Great North Road	Roadside	508326	298684	NO ₂	No	22	2 (8m to trunk road)	No	3
Offords	233 High Street	Suburban	522086	267508	NO ₂	No	1.5	1.5	No	3
Sawtry 1	81 Fen Lane	Suburban	517440	283443	NO ₂	No	4	2	No	3
Alconbury 1	54 Manor Lane	Roadside	518954	276010	NO ₂	No	6	2	No	3
Alconbury 2	Lords Ways	Suburban	518955	275520	NO ₂	No	10	1	No	3

Notes:

^{(1) 0}m if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

⁽²⁾ N/A if not applicable.

Table A.3 – Annual Mean NO₂ Monitoring Results

Site ID	Cita Tana	Monitoring	Valid Data Capture for	Valid Data	N	IO₂ Annual Me	ean Concentra	ation (µg/m³) ⁽	(3)
Site ID	Site Type	Туре	Monitoring Period (%)	Capture 2016 (%) ⁽²⁾	2012	2013	2014	2015	2016
PFH	Roadside	Automatic		98%	55.5	45	38.9	32.2	39.4
St Neots 1	Kerbside Diffusion tube		100	100	22.8	20.6	19.6	20.5	22.1
St Neots 3	Urban Background	Diffusion tube	100	100	18.5	18.7	19.0	16.6	18.3
St Neots 4	Urban Background	Diffusion tube	100	100	15.8	15.4	15.3	14.3	16.8
St Neots 5	Kerbside	Diffusion tube	100	92	35.9	36.8	36.0	31.7	31.3
St Neots 6	Kerbside	Diffusion tube	100	92	35.5	31.0	31.6	28.7	29.6
St Neots 7	Suburban	Diffusion tube	100	100	22.3	21.4	20.3	19.9	20.5
St Neots 9	Suburban	Diffusion tube	100	100	27.9	24.5	23.5	24.5	28.4
Southoe 1	Roadside	Diffusion tube	100	100	18.5	20.3	19.2	17.4	18.6
Buckden 1	Roadside	Diffusion tube	100	100	23.7	27.6	26.8	21.2	24.9
Buckden 2	Roadside	Diffusion tube	100	100	23.3	23.8	25.3	25.6	25.8
Buckden 3	Roadside	Diffusion tube	100	100	31.3	32.2	32.2	28.9	29.6
Buckden 4	Roadside	Diffusion tube	100	100	20.0	19.5	19.5	19.4	22.3

Brampton 1	Roadside	Diffusion tube	100	100	14.3	17.1	14.1	14.4	15.4
Brampton 2	Roadside	Diffusion tube	100	100	N/A	N/A	N/A	16.8	16.3
Brampton 3	Roadside	Diffusion tube	100	100	26.9	29.4	25.6	22.7	27
Brampton 4	Roadside	Diffusion tube	100	100	N/A	N/A	N/A	18.8	19.8
Brampton 5	Roadside	Diffusion tube	100	92	16.3	18.4	16.9	15.9	17.5
Brampton 7	Suburban	Diffusion tube	100	100	N/A	N/A	N/A	17.0	17.5
A 1	Suburban	Diffusion tube	100	100	17	19.2	18.0	15.7	18.4
Catworth 1	Rural	Diffusion tube	100	100	22.6	21.4	21.7	21.6	18.9
PFH 1	Roadside	Diffusion tube	100	100	49.3	47.5	49.5	44.2	45.1
PFH 2	Roadside	Diffusion tube	100	100	49	48.8	52.0	44.7	46.1
PFH 3	Roadside	Diffusion tube	100	100	48.5	50.2	52.8	46.6	44.8
Huntingdon 1	Suburban	Diffusion tube	100	100	20.2	21.3	18.5	17.1	19.3
Huntingdon 2	Kerbside	Diffusion tube	100	100	24.4	23.0	22.7	21.0	22.2
Huntingdon 3	Kerbside	Diffusion tube	100	100	44.5	42.9	41.1	40.7	39.9
Huntingdon 4	Kerbside	Diffusion tube	100	100	27.9	27.9	28.9	29.9	28.7
Huntingdon 5	Roadside	Diffusion tube	100	83	29.1	29.9	27.0	27.6	26.9
Huntingdon 6	Roadside	Diffusion tube	100	100	26.4	24.6	25.2	23.7	25.2

		Diffusion							
Huntingdon 7	Roadside	tube	100	100	N/A	N/A	N/A	36.4	34.6
Godmanchester 1	Roadside	Diffusion tube	100	92	24.3	27.9	23.8	22.7	24.8
Wood Green Animal Shelter	Rural	Diffusion tube	100	100	N/A	N/A	N/A	12.4	13.7
Fenstanton 1	Roadside	Diffusion tube	100	100	35.5	29.5	32.8	31.5	31.2
Fenstanton 2	Roadside	Diffusion tube	100	100	24.5	22.0	22.5	19.9	20
Fenstanton 3	Rural	Diffusion tube	100	100	N/A	N/A	N/A	13.7	13.8
St Ives 1	Urban Background	Diffusion tube	100	92	18.9	17.8	18.7	17.6	18.6
St Ives 2	Suburban	Diffusion tube	100	100	N/A	N/A	N/A	21.3	22.9
Ramsey 1	Urban Background	Diffusion tube	100	100	17.2	17.2	18.0	17.8	19.7
Hilton	Suburban	Diffusion tube	100	92	N/A	N/A	N/A	13.9	13.4
Stibbington 1	Roadside	Diffusion tube	100	100	27.8	26.2	26.5	29.6	28.6
Offords	Suburban	Diffusion tube	100	92	N/A	N/A	N/A	20.3	18.8
Sawtry 1	Suburban	Diffusion tube	100	100	19.7	20.3	21.8	20.9	22.3
Alconbury 1	Roadside	Diffusion tube	100	100	21	24.3	21.4	19.9	21.8
Alconbury 2	Suburban	Diffusion tube	100	100	N/A	N/A	N/A	17.7	15.9

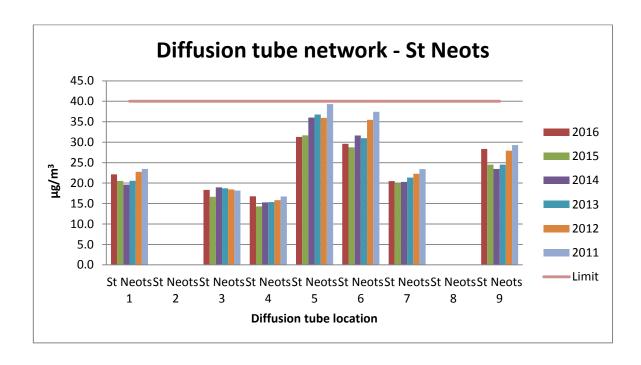
[☑] Diffusion tube data has been bias corrected

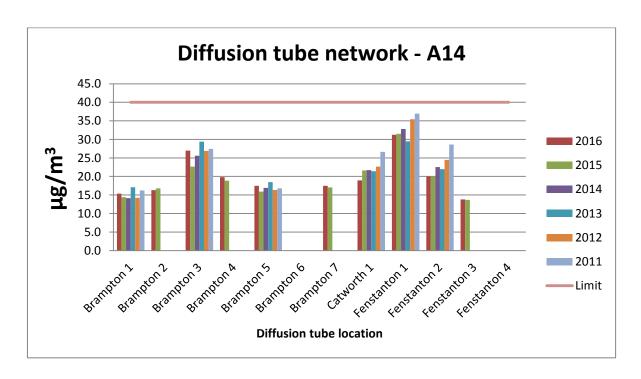
 $[\]square$ Annualisation has been conducted where data capture is <75%

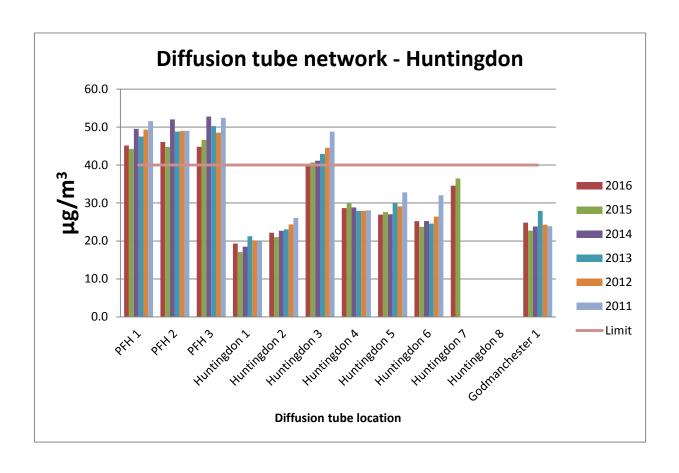
 $[\]Box$ If applicable, all data has been distance corrected for relevant exposure – See table B1.

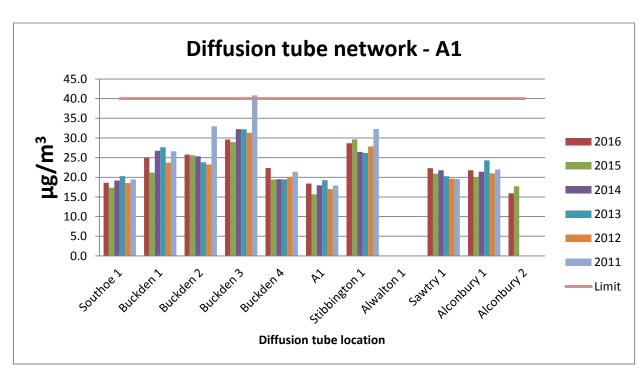
Notes:

Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.


NO₂ annual means exceeding 60μg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.


- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.


N/A indicates that the diffusion tube was not present in that location during the specified year.


Figure A.1 - Trends in Annual Mean NO₂ Concentrations

Please note that the following graphs will be in a different format next year, similar to those for Particulate Matter in the next section.

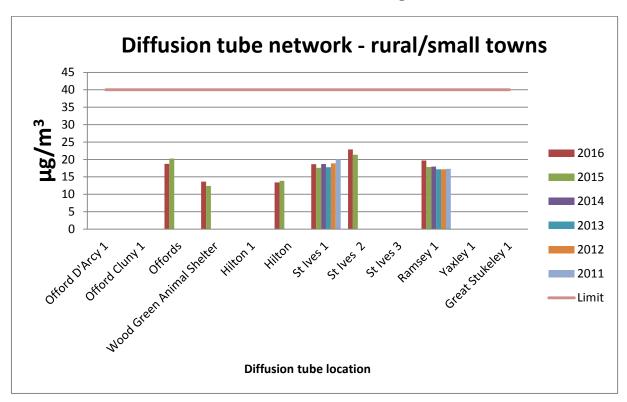


Table A.4 – 1-Hour Mean NO₂ Monitoring Results

Site ID	Sito Tyro	Monitoring	Valid Data Capture for Monitoring	Valid Data	NC	O₂ 1-Hour	200μg/m ³	00μg/m ^{3 (3)}		
Site ID	Site Type	Туре	Period (%) ⁽¹⁾	Capture 2016 (%) ⁽²⁾	2012	2013	2014	2015	2016	
PFH	Roadside	Automatic		98	3	0	0	0	0	

Notes:

Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

Table A.5 – Annual Mean PM₁₀ Monitoring Results

Site ID	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2016 (%) ⁽²⁾	PM	I ₁₀ Annual Me	ean Concent	ration (µg/m³	(3)
				2012	2013	2014	2015	2016
PFH	Roadside	Automatic	96.60	31.2	30	20.49	19.34	20.39

 \square Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the PM₁₀ annual mean objective of 40µg/m³ are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

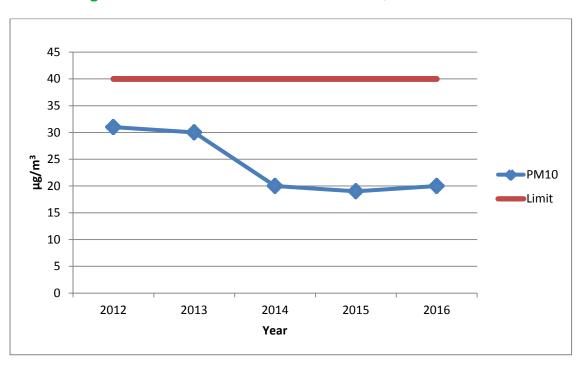
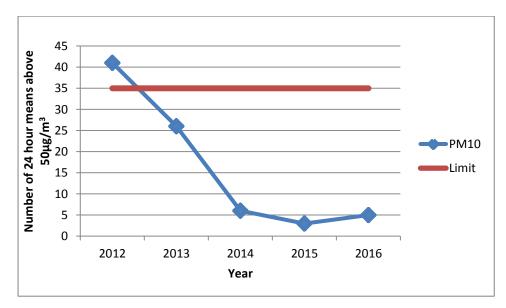


Figure A.2 – Trends in Annual Mean PM₁₀ Concentrations

Table A.6 – 24-Hour Mean PM₁₀ Monitoring Results


Site ID	Sita Type	Valid Data Capture for Monitoring	Valid Data Capture	PM	> 50µg/m	50μg/m ^{3 (3)}		
Site iD	Site ID Site Type Per	Period (%) ⁽¹⁾	2016 (%) ⁽²⁾	2012	2013	2014	2015	2016
PFH	Roadside		96.60	41	26	6	3	5

Notes:

Exceedances of the PM_{10} 24-hour mean objective ($50\mu g/m^3$ not to be exceeded more than 35 times/year) are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets.

Figure A.3 – Trends in Number of 24-Hour Mean PM₁₀ Results >50μg/m³

Table A.7 – PM_{2.5} Monitoring Results

Site ID	Site Type	Valid Data Capture for Monitoring	Valid Data Capture	PM _{2.5}	Annual Me	an Concen	tration (µg/	m³) ⁽³⁾
		Period (%) ⁽¹⁾	2016 (%) ⁽²⁾	2012	2013	2014	2015	2016
PFH	Roadside		98			13.9	12.3	11.8

Notes:

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

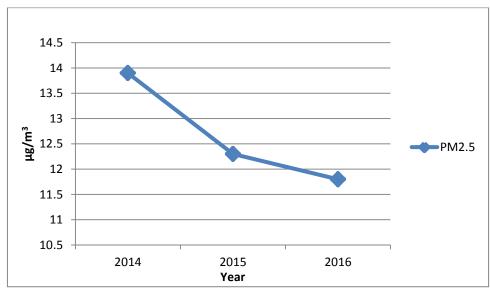


Figure A.4 – Trends in Annual Mean PM_{2.5} Concentrations

Appendix B: Full Monthly Diffusion Tube Results for 2016

Table B.1 – NO₂ Monthly Diffusion Tube Results - 2016

							NO ₂ Mea	ın Concer	ntrations ((µg/m³)					
														Annual Mea	ın
Site ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted (0.77r) and Annualised	Distance Corrected to Nearest Exposure (²)
St Neots 1	23.7	29.9	37.4	30.6	26.7	22	21.1	24.1	26.7	26.3	35.9	40.9	28.8	22.1	
St Neots 3	24.4	27.8	30.8	26.8	20.3	15	14.4	15.6	22.1	19.2	31.3	38.7	23.8	18.3	
St Neots 4	31.1	26.1	23.9	19.6	19.5	13	12.8	14.8	21.1	18.3	27.8	33.7	21.8	16.8	
St Neots 5	50.1	41	43	46.6	41.3	32	34.7	31.2		34.5	44.2	47.9	40.6	31.3	
St Neots 6	43.4	39.2	43.7	42.9	36.9	30	30.1	31.4		36.6	40.6	48.4	38.5	29.6	
St Neots 7	28.9	32.6	32.2	28.9	25.2	19	17.7	17.7	27.1	23.8	31.1	35	26.6	20.5	
St Neots 9	49.4	43.5	39.6	39	31.2	28	27.1	29.5	34.4	25.3	46.9	48.4	36.8	28.4	
Southoe 1	29.1	26.6	24.6	28.8	25.9	24	11.3	17.8	22.8	26.1	20.9	31.8	24.2	18.6	
Buckden 1	29.7	33.7	37.6	36.9	34	29	17.8	24	32	37.6	33.5	42.7	32.4	24.9	
Buckden 2	34.5	36.3	39.8	36.7	27.8	24	32.4	33.3	28.8	27.8	38.9	41.4	33.5	25.8	
Buckden 3	44.6	41.3	47.1	34.9	40.1	28	30.3	30.1	39.4	32.4	39.5	53.2	38.4	29.6	
Buckden 4	31.4	42.9	31.3	26.2	23.6	19	30.5	19.7	26.7	23.5	36.3	37.2	29.0	22.3	
Brampton 1	26.3	23.3	18.9	19.7	17.1	11	9.6	12.3	19.7	18.3	27.7	35.5	19.9	15.4	
Brampton 2	32.9	24.6	22.2	20.4	15.2	13	11.7	15	18.2	20.5	30.1	31	21.2	16.3	
Brampton 3	35.4	36.5	48.5	44.4	34.2	27	18	26.1	28.9	38.8	40.6	42.3	35.1	27.0	

_															
Brampton 4	26	29.3	32.5	31.2	22.1	18	12.5	17.5	24.3	27.9	34.6	32.1	25.7	19.8	
Brampton 5	23.2	28	29.2	21.3	20.5		13.1	14.4	21.1	19.7	27.8	31.5	22.7	17.5	
Brampton 7	29.4	25.9	27.7	21.2	15	15	13.6	16.7	20.7	23.8	30.1	32.9	22.7	17.5	
A1	23.5	24	29.4	27.7	24	20	10.8	15.3	21.7	26.9	29.7	34	23.9	18.4	
Catworth 1	25.3	32.6	20.8	27.6	22.5	15	21.1	22.3	27	16.4	26.5	37.5	24.6	18.9	
PFH 1	58.9	58	60.3	63.8	59.6	57	52	50.7	63.1	54.2	61.5	64	58.6	45.1	42.1
PFH 2	56.4	60.9	66.2	56.3	61.1	53	56.9	53.2	61	55	69.7	68.2	59.8	46.1	43
PFH 3	44.1	60.3	62.4	61.3	56.5	59	56.9	54.7	64.5	50.3	64.1	63.9	58.2	44.8	41.9
Huntingdon 1	26.2	25.3	34.6	30.3	28.1	22	11.6	19.7	21.1	27.6	33.5	21.1	25.1	19.3	
Huntingdon 2	37.3	29.3	31.2	29	30.4	17	24.4	21.2	29.7	22.9	37.5	35.1	28.8	22.2	
Huntingdon 3	59.5	59.6	54.3	52.5	53	41	52.8	43.9	53.7	41.2	58.9	52.1	51.9	39.9	39.9
Huntingdon 4	43.8	38.3	43.1	38.7	31.8	32	27.3	28.4	38.5	32.5	48.1	44.1	37.2	28.7	
Huntingdon 5			35.9	36.9	35.6	26	35.7	29.8	36.9	28.4	40	44.2	35.0	26.9	
Huntingdon 6	48.1	33.8	33.7	34.3	28.2	27	25.6	26.2	32.7	23.6	36.7	43.5	32.8	25.2	
Huntingdon 7	61.7	48.6	41.2	47.5	40.5	33	32.8	38.4	46	31.3	56.1	62.1	44.9	34.6	
Godmanchester	00.4	00.7	40.0		05.0	0.4	440	0.4.0	00.4	00.0	00	07.0	22.2	24.0	
Wood Green	28.4	33.7	43.6		35.9	31	14.9	24.2	30.4	39.2	36	37.3	32.2	24.8	
Animal Shelter	27.2	19.3	19.3	17.4	9.1	9.6	9	9.6	18.6	16.3	25.5	32	17.7	13.7	
Fenstanton 1	48	45.9	38.6	41.1	33.3	31	44.1	38	44.1	28.9	45.5	48.5	40.6	31.2	
Fenstanton 2	35	26.7	27.6	27.8	24.5	16	21.7	20.1	27.6	18.7	30.3	35.2	26.0	20.0	
Fenstanton 3	23.5	17.8	21.5	18.5	12.9	12	10.3	13	18.1	18.4	22.3	26.5	17.9	13.8	
St Ives 1	31.8	27.8	21.3	24	27.8		14.7	16.3	21.1	16.4	30	35.2	24.2	18.6	
St Ives 2	34.2	32.8	33.2	39.3	22.4	23	25.7	21.5	26.8	23.7	34.7	39.3	29.7	22.9	
Ramsey 1	28	26.6	29.5	28.3	26.6	20	15.9	17.4	24.9	23.2	30.3	36.2	25.6	19.7	
Hilton	26.7	20.4	15.7		11.7	11	10	12	15.7	18.7	25.4	23.7	17.4	13.4	
Stibbington 1	53.2	42.1	32.1	40.5	33.3	27	34.2	32.2	39.5	25.2	40.1	47.1	37.2	28.6	
Offords		28.5	26.6	26.7	15.9	19	17	17.7	33.5	23.7	27.5	32.4	24.4	18.8	

Sawtry 1	32.1	30.4	37.1	29.1	32.1	24	16.2	20.4	23.7	27.2	36.4	39.4	29.0	22.3	
Alconbury 1	32.8	30.3	29.6	33.6	30.6	22	15.6	18.3	26.7	29.8	33.3	37	28.3	21.8	
Alconbury 2	25.9	16.9	22.3	24.7	14.7	15	15.5	14.9	26	21.5	22.8	28.4	20.7	15.9	

 $\hfill\square$ Local bias adjustment factor used

☐ Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.

 NO_2 annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**.

- (1) See Appendix C for details on bias adjustment and annualisation.
- (2) Distance corrected to nearest relevant public exposure where levels are indicated to be above 36µg/m³, in line with good practice (Objective -10% for uncertainty).

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

C.1 Diffusion Tubes:

The Environmental Scientifics Group analyse the nitrogen dioxide tubes for Huntingdonshire District Council at Didcot using the spiking acetone: triethanolamine (50:50) method.

Exposure periods for the diffusion tubes are in line with the recommended Diffusion Tube Monitoring Calendar provided by DEFRA (available at https://laqm.defra.gov.uk/diffusion-tubes/data-entry.html), with the tubes being changed every four or five weeks.

C.2 Diffusion tube bias adjustment factors:

Diffusion tube values have been multiplied by a bias correction factor of 0.77 gained from the DEFRA LAQM Helpdesk national bias adjustment database (version 09/17 available at https://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html). The national adjustment figure was utilised due to increased uncertainty in figures obtained by Huntingdonshire District Council's NOx monitor.

Spreadsheet Version Number: 09/17 National Diffusion Tube Bias Adjustment Factor Spreadsheet ow the steps below **in the correct order** to show the results of **relevant** co This spreadsheet will be ata only apply to tubes exposed monthly and are not suitable for correcting individual short-term monitoring periods whenever presenting adjusted data, you should state the adjustment factor used and the version of the spreadsheet his spreadhseet will be updated every few months: the factors may therefore be subject to change. This should not c The LAQM Helpdesk is operated on behalf of Defra and the Devolved Administrations by Bureau Veritas, in conjunction with contract partners AECOM and the National Physical Laboratory. Spreadsheet maintained by the National Physical Laboratory. Original compiled by Air Quality Consultants Ltd. Step 3: Select a Year Where there is only one study for a chosen combination, you should use the adjustment factor shown Select a Preparation Select the Laboratory that Analyses Your with caution. Where there is more than one study, use the overall factor³ shown in blue at the foot of the final column. Method from the Adjustme **Local Authority** Precisio Conc. (Dm) (µg/m³) Ţ, ŢŢ (µg/m³) 0.75 ESG Didcot 50% TEA in acetone 2016 R Cambridge City Council ESG Didcot 50% TEA in acctone 2016 R City of Wolverhampton Council 12 39 13.5% G 0.88 50% TEA in acetone ESG Didcot 2016 R City of Wolverhampton Council 22.7% 0.81 0.75 50% TEA in acetone ESG Didcot 2016 B Gravesham Borough Council 12 23 33.5% ESG Didcot 50% TEA in acctone 2016 B Gravesham Borough Council 12 36.1% 0.73 ESG Didcot 50% TEA in acetone 50% TEA in acetone R Horsham District Council 30.3% KS Horsham District Council 13.9% ESG Didcot 2016 29 ESG Didcot 50% TEA in acctone 2016 R Horsham District Council 10 34 24 39.4% 0.72 0.80 0.73 50% TEA in acetone ESG Didcot 2016 R Medway Council 12 36.6% ESG Didcol 50% TEA in acetone B Medway Council 88.1% 0.85 0.72 0% TEA in acetone 12 37 ESG Didcot 50% TEA in acetone 2016 UB City of York Council 22 38.6% ESG Didcot 50% TEA in acctone 2016 2016 R City of York Council 34.1% 0.75 R City of York Council 50% TEA in acetone 33.4% ESG Didcot 50% TEA in acctone 2016 R City of York Council 12 51.2% 0.66 KS Leeds City Council
R Leeds City Council ESG Didcot ESG Didcot 50% TEA in acetone 50% TEA in acetone 2016 2016 20.1% 27.6% ESG Didcot 50% TEA in acetone 2016 R City and County Swansea 35 31 12.7% 0.89 0.83 0.73 ESG Didcot 50% TEA in acetone 2016 R North East Lincolnshire Council 37.3% ESG Didcot 50% TEA in acctone 2016 R North East Lincolnshire Council 44 52.0% 0.66 0.75 0.83 SU Reigate and Banstead B ESG Didcot 50% TEA in acetone 2016 B Reigate and Banstead BC 12 20 17 20.7% G KS Slough Borough Council

R Wrexham County Borough Co 2016 2016 ESG Didcot 50% TEA in acctone 27.6% Overall Factor* (38 studies) ESG Didcot 50% TEA in acctone

Figure C.1: Diffusion Tube Bias Adjustment:

C.3 Distance correction:

Correspondance with both Fang Lin and Anthony of the LAQM Helpdesk team clarified that a distance calculation is only required for locations with exceedances over the AQ objective and the inclusion of any other sites within 10% is considered good practice, i.e. any above 36µg/m³. The LAQM NO₂ fall off with distance calculator was utilised, as the following figures demonstrate.

C.4 Automatic Monitoring

Calibration and Service information are attached in figures C.5 and C.6.

Figure C.2: PFH DT 1 distance correction calculation:

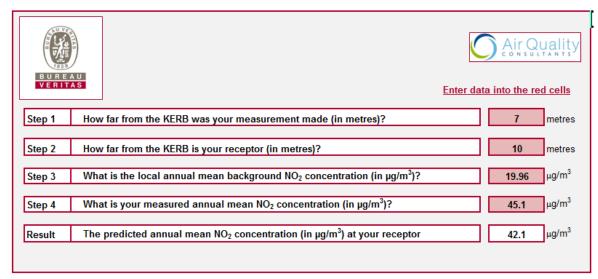


Figure C.3: PFH DT 2 distance correction calculation:

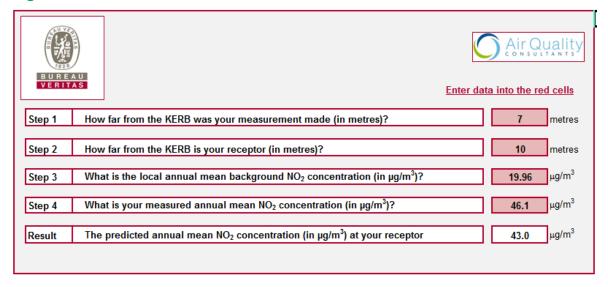
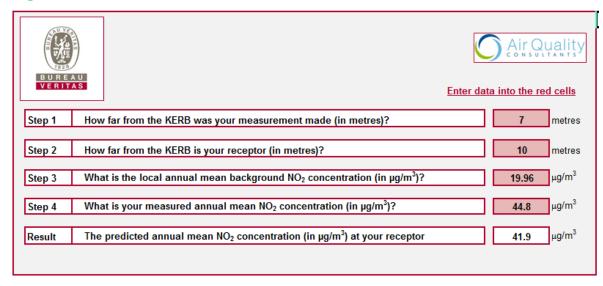



Figure C.4: PFH DT 3 distance correction calculation:

Figure C.5: Third party QA/QC reports:

CERTIFICATE OF CALIBRATION

Ricardo Energy and Environment, Gemini Building, Fermi Avenue Harwell, Didcot,

Page 1 of 3 Approved Signatories: S. Eaton B Stacey S Stratton
A Madle D Hector N Rand N. Rund Signed: 05 Jul 2016 Date of issue: Certificate Number: 03406 Customer Name and Address: Dave Bass **Huntingdonshire District Council** Pathfinder House St Mary's Street Huntingdon Cambridgeshire PE29 3TN Description: Calibration factors for the air monitoring station at Huntingdon Pathfinder House Ricardo Energy & Environment ID: ED20645084 The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor km2 providing a level of confidence of approximately 95% The uncertainty evaluation has been carried out in accordance with UKAS requirements This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory Ricardo Energy & Environment Registered office Head Office Gemini Building. Shoreham Technical Centre Shoreham-by-Sea West Sussex Ferni Avenue, Hanvell, Oxon BN43 5FG OX11 00R Registered in England No. Tel: +44 (0)1235 753 000 VAT Registration No. GB 212 8365 24

LAQM Annual Status Report 2017

CERTIFICATE OF CALIBRATION

Page 2 of 3

Date of issue: 05 Jul 2016

Certificate Number: 03406

Ricardo Energy & Environment ID: ED20645084

Huntingdon Pathfinder House

Date of audit: 06 Jun 2016

Species	Analyser Serial no	Zero Response ¹	uncertainty	Calibration Factor ²	uncertainty %	Converter eff. (%) ³
NOx	426608503	0.7	2.5	0.9563	3.5	96.3
NO	426608503	-0.1	2.5	0.9486	3.5	n/a

Huntingdon Pathfinder House Date of audit: 06 Jun 2016

Species	Analyser Serial no	Parameter	Specified Value	Measured Value	Deviation %	Uncertaint y %
PM ₁₀	CM09510 077	Total Flow ⁴ k _o ⁵	16.67 0	16.43	-1.4	2.25 1.00

Huntingdon Pathfinder House Date of audit: 06 Jun 2016

Species	Analyser Serial no	Parameter	Specified Value	Measured Value	Deviation %	Uncertainty %
PM _{2.5}	CM09510 083	Total Flow ⁴ k _o ⁵	16.67 0	16.35	-1.9	2.25 1.00

CERTIFICATE OF CALIBRATION

Page 3 of 3

Date of issue: 05 Jul 2016

Certificate Number: 03406

Ricardo Energy & Environment ID: ED20645084

The gaseous ambient analysers listed above have been tested for zero response, calibration factor, linearity and converter efficiency (NOx analysers) by documented methods. The factors have been calculated using certified gas standards. The particulate analysers listed above have been tested for sample flow rates and ko(where appropriate) by documented methods. Note that the test results are valid on the day of test only, as analyser drift over time cannot be quantified. All results for gaseous species are given in ppb (parts per billion) mole fractions or ppm (parts per million) mole fractions.

Concentration = F(Output - Zero Response)

Where F = Calibration Factor provided on this certificate

Output = Reading on the data logging system of the analyser

Zero Response = Zero Response provided on this certificate

The calibration results shaded are those that fall within our scope of accreditation, all other results on this certificate are not UKAS accredited, but have been included for completeness.

¹ The zero response is the zero reading on the data logging system of the analyser when audit zero gas was introduced to the analysers under test.

² The calibration factor is the multiplying factor required to scale the reading on the data logging system of the analyser into reported concentration units (ppb for NO, NOx, SO₂, O₃ and ppm for CO. Where 1ppm = 1000ppb). It should be used in conjunction with the zero response. A corrected concentration is calculated using the following equation:

Onverter eff. is the measured efficiency of the NO₂ to NO converter within the oxides of nitrogen analyser under test.

⁴ The measured main flow rate (where this is applicable) is the flow rate through the sensor unit of the TEOM particulate analyser under test. The measured aux flow rate (where this is applicable) is the flow rate through the bypass tubing of the TEOM particulate analyser under test. The measured total flow rate is the total flow rate through the particulate analyser under test. Units of flow are i.min⁻¹, reported at prevailing ambient conditions unless otherwise specified. Where flow rates are highlighted in bold, it indicates that measurements were not made at the analyser sample inlet. These measurements therefore may not accurately reflect analyser performance in normal operation.

⁶ The calculated k₀ value (specifically for TEOM analysers) is the calculated k₀ spring constant based on tests undertaken with filters of known weight. The % deviation indicates the closeness of the calculated result to the manufacturer's specified value of k₀.

Richard Hollingsworth **Huntingdonshire District Council** Pathfinder House St Mary's Street Huntingdon Cambridgeshire PE29 3TN

05th June 2016 Reference 20645084/R20

Nick Rand Ricardo Energy & Environment Gemini Building Fermi Avenue Harwell Oxfordshire OX11 DQR, UK

Tel: +44 (0)1235 753 484 E: nick.rand@ricardo.com W:www.airqualityengland.co.uk/ W: ee.ricardo.com

AIR MONITORING QA/QC AUDIT RESULTS

Ambient air monitoring stations: Huntingdon Pathfinder House Date of Audits: 06th June 2016

Dear Richard,

This report documents the results of quality control audit to Huntingdonshire District Council's Pathfinder House ambient air monitoring station. The work programme is supplied under contract Ricardo Energy & Environment/20845084 for the supply of audit services.

The Huntingdon Pathfinder House monitoring station was audited on 06th June 2016. The equipment audits utilise procedures that are applied within the Department for Environment, Food and Rural Affairs (Defra) national automatic air monitoring network quality control programme.

AUDIT RESULTS

The following sections provide details of the audit results on a pollutant basis with recommendations for data management action where appropriate.

Oxides of Nitrogen Analysers

A major factor governing the analyser's performance is the NO_x analyser's converter and its ability to reduce the nitrogen dioxide to nitric oxide. The recommended range for instrumentation in the national automatic air monitoring network is in the range of 98% - 102% efficient. Our tests show the converter in this analyser to be 98.3% efficient with NO2 concentrations of 231 ppb. This result has failed the audit pass criteria, our second repeat test showed the converter at 96.6% efficient with an NO2 concentration of 142 ppb, this also failed the audit pass criteria.

In order for NO_v data to be BS EN14211 compliant, NO_v datasets where converter results are less than 98% efficient can be rescaled, provided any impact on data quality is accounted for in the rescaling process. It is the responsibility of the data ratification team to critically assess all evidence including calibrations, audits and equipment support unit reports to quantify this impact. We advised following the audit that you request that your equipment support unit attend for an immediate call out to investigate any underlying reasons for this outlier and to aim to get the converter within the recommended audit pass range.

Ricardo Energy & Environment, a Registered office trading name of Ricardo-AEA LM Shoreham Technical Centre Head Office Gemini Building,

Fermi Avenue, Harwell, OX11 0QR

Tel: +44 (0)1235 753 000

Shoreham-by-See

Registered in England No. 08229284

VAT Registration No. GB 144024745

BN43 5FQ

To ensure that the analysers are sampling only ambient air the instruments were leak checked. The results were satisfactory, indicating that the analyser sampling systems were free of significant leaks. The analysers exhibited good steady state responses to both zero and span (calibration) gases with acceptable levels of variation (noise).

The NO_x analyser sample flow rate was measured using a calibrated flow meter and compared against the analyser's flow rate sensor displayed value to evaluate its accuracy. The analyser's flow rate sensor reading was within 10% of the calibrated flow meter reading and therefore passed this test.

Based on the NO $_{\rm x}$ analyser's response to the audit standard and audit zero, the concentrations of the stations NO cylinders have been reassessed. This provides an indication of the on-site standards stability (the gas concentration stabilities). For the purpose of these stability checks, the criteria adopted within the national network, and used here, is that the recalculated concentration should lie within 10% of the suppliers stated concentrations. The results of the recalculations are presented below:

Pathi	inder House - NO	O cylinder 11513	1D	
	NO _x (ppb)	% change from stated	NO (ppb)	% change from stated
Manufacturers Stated Concentration	469		469	-
Recalculated Concentration (03/08/14)	440	-6.2	432	-7.8
Recalculated Concentration (03/12/14)	427	-9.0	424	-9.6
Recalculated Concentration (02/08/15)	414	-11.8	413	-12.0
Recalculated Concentration (07/12/15)	413	-11.8	412	-12.1
Recalculated Concentration (06/06/16)	428	-8.9	423	-9.8

The latest June 2016 audit results indicate that the NO cylinder concentrations for the Pathfinder House monitoring station were within the audit pass criteria of ±10%. Previous results in December 2015 and June 2015 were just outside the audit pass criteria. The last 4 station audits all agree within 3% of each other, this shows evidence the cylinder concentrations are stable enough to reliably scale ambient data.

Thermo 5015i PM10 & PM2.8 analysers

To ensure that a true PM₁₀ measurement is made, the total flow through the sample inlet must be 16.7 litres per minute. Volumetric flow tests were carried out on the instrument. The measured flows showed good agreement with the system flow set points. To ensure that the analyser was sampling only ambient air, the instrument flow rates were also checked again with a flow restricting test adaptor. The aim here is to identify a leak in the system by comparing these restricted flow readings against the previously recorded unrestricted flow readings. No large discrepancy was found and the instrument was deemed as being free of major leaks.

Certificate of Calibration

Calibration factors and zeros have been produced on the basis of the audit calibrations conducted. All of these calibrations were conducted with transfer standards traceable to national metrology standards. The attached Certificate of Calibration provides the calibration and zero response factors for the oxides of nitrogen analysers under test on the day of the audits as well as the measured flows and calculated calibration constant for the particulate analysers.

DATA MANAGEMENT

The following recommendations and comments can be made as a result of these audits:

- Compare the Huntingdonshire District Council database scaling factors for the day of the audits with the factors
 and zeros on the Certificate of Calibration. If a deviation greater than the uncertainty of the respective factors
 on the Certificate exists, investigate the underlying reason and implement suitable data management actions.
- Consider the impact of the outlying NO_x converter efficiency result at 96.6%. For data to be BS EN14211 compliant it can be rescaled, provided any impact on data quality is accounted for in the rescaling process. It is the responsibility of the data ratification team to critically assess all evidence including calibrations, audits and equipment support unit reports to quantify this impact. We advised following the audit that you request that your equipment support unit attend for an immediate call out to investigate any underlying reasons for this outlier and to aim to get the converter within the recommended audit pass range.

If you have any questions relating to our audit results or wish to discuss any aspect of air pollution monitoring, please don't hesitate to contact me on 01235 753484 or 07968 707 588 nick_rand@ricardo.com

Yours sincerely

N. Runk

Nick Rand

Air Quality - Ricardo Energy and Environment www.airqualityengland.co.uk/

ee.ricardo.com

Figure C.6: AQMS service reports:

Customer : huntington Site Name: huntington Reason for visit:	Job	REPORT No: bf310516huntin			mitors.co.uk fender innovation May 16 01-Jun-16
Action Taken: Pre span and zero che serviced analyser rebuilt pump post service zero and For both 5014i flow check rebuilt pump cleaned pm10 head a post service flow calit	span calibrated nd 2.5 cyclone.				
	Pa	arts Used			
Model Used on:	Part No: (Must be oompleted)	Description:		Qty	Involce
	sk2888	pump kit		2	
	22 stroke	pump kit		4	
		o rings o rings		2	
	Engineer: Visit Type:	Routine Service Complete site Inventor	▼ ny		

		Therm	10 N O)	(AIR MONITORS.	
Jo	b Report No: Serial No:	bf310516huntin 426608		ce	Fault Message:		I
		Pre Stat	istics]	Post Statistics]
	Alarm 1			7	Alarm 1		Ţ
	Alarm 2			-	Alarm 2		1 .
	Reading NO			ppb	Amb Reading NO	12.8 25.4	ppb
	Reading NOx npie flow inst			ppu	AmbReading NOx	0.72	ppb
	nple flow Act			\dashv	Sample flow Inst Sample flow Act	0.72	+
	Fact NO BKG			\dashv	Cal Fact NO BKG	7	+
	act NO COEF			\dashv	Cal fact NO COEF	0.943	+
	ot NO2 COEF			\dashv	Cal fact NO2 COEF	1	†
	not NOX BKG			┨	Cal Fact NOX BKG	8.1	†
	t NOX COEF			┨	Cal fact NOX COEF	1.005	†
	Pressure	243.		mmHg	Pressure	190.1	mmHg
				_	L		1
		(tick	approp bo			(tick approp b	
	MODE	(Uck EM lights ON:	approp bo			(tick approp b	ox)
	DATA Logger	M lights ON:					
	DATA Logger Completed s	M lights ON:					

Air Monitors Ltd - Unit 2 Bredon Court - Brockeridge Park - Twyning - Tewkesbury - Glos - GL20 6FF Tel: 01684 857530 Fax 01684 857538 Email: karen@airmonitors.co.uk Web: www.airmonitors.co.uk

Thermo NOX

	Therm	o 5014		AIR MONITORS.
Job Report No Serial No	bf310516huntin	gton-service	Fault Message:	
	Pre Stat	istics		Post Statistics
Alarm			Alarm 1	
Alarm			Alarm 2	
AmbReading Pl			AmbReading PM	400
Amb Ri Sample Ri			Amb RH Sample RH	100 47.9
Amb Tm			Amb Tmp	8.9
Sample Tm			Sample Tmp	20.9
Vaouur			Vaouum	47.7
Flor		-	Flow	16.67
f low in	vt 15.70	3	flow Int	16.7
		approp box)	no	(tick approp box)
	DEM lights ON:			
DATA Logge	DEM lights ON:			
DATA Logge	DEM lights ON:	you		yes no

Air Monitors Ltd - Unit 2 Bredon Court - Brockeridge Park - Twyning - Tewkesbury - Glos - GL20 6FF Tel: 01684 857530 Fax 01684 857538 Email: karen@airmonitors.co.uk Web: www.airmonitors.co.uk

Thermo 5014 pm2.5

	Therm	o 5014		AIR MONITORS.	
Job Report No: Serial No:	bf310516hunting	ton-service	Fault Message:		
	Pre Stati	stics		Post Statistics	
Alarm 1			Alarm 1		
Alarm 2			Alarm 2		
AmbReading PM Amb RH			AmbReading PM Amb RH	100	
Sample RH			Amb RH Sample RH	39.3	
Amb Tmp		$\overline{}$	Amb Tmp	9.1	
Sample Tmp			Sample Tmp	24.5	
Vaouum			Vaouum	43.6	
Flow	16.82	!	Flow	16.66	
flow Int				26	
pump	25		}	26	
	<u> </u>		ŀ		
		$\overline{}$	ŀ		
			ŀ		
			I		
			t		
MODE	(tick a	pprop box)		(tick approp box	no □
	EM lights ON:			yes	
DATA Logger	EM lights ON:	yes no			
DATA Logger	EM lights ON: r Operational: ite inventory:	уес по		yes	
DATA Logger Completed s AIR Sample Ma	EM lights ON: r Operational: ite inventory:	yes no			

Air Monitors Ltd - Unit 2 Bredon Court - Brockeridge Park - Twyning - Tewkesbury - Glos - GL20 6FF Tel: 01684 857530 Fax 01684 857538 Email: karen@airmonitors.co.uk Web: www.airmonitors.co.uk

Thermo 5014 pm10

С	alibr	NO ation	x An /Line	alyse arity	er Rep	ort			AH M	ONITORS
l: 42e			1		Ser	rial No:	426608503			Report No. bf3105188
	P	re-S	ervi	ce/	Rep	air	Calib	ratio	n	
							<u>s</u>	pan So	nrce De	tails
Result	N	0	N	02	N	οx				
Gas	PPB	mV	PPB	mV	PPB	mV			NO	NO2
External Zero	-0.6		-0.1		-0.5			Cyl. Na:		
Injection of NO	266		0.1		267			Cyl. PSI:	600	
Injection of NO2								yl. Conc:	489	
Result	N			02		ox.	<u>Extern</u>		_	ce Details
Gas	PPB	mV	PPB	mV	PPB	mV	1		On Site ZA	G:
External Zero	0		0		0		1		Cylinder:	
Injection of NO	468		1		489		1		Scrubber:	
Injection of NO2							1			
NO NO2	Display	(PPB)	Injecto	G id (NO)		heck ed (03) opb			▲ NO	0
NO NO2					ł			Make Et	Teciency	#DIV/0!
Requested Span	Gas			Serv		Line	earity	Chec		
Point 200	N		+ 001	(ma)	Jiapia	(ppo)	Photo-me	wr (ppb)	Т	
160	N								t	
120	N								I	
80	N								ļ	
40	ZERO	OAIR			_				+	
						Blo	Hig	ender Mod High Con h Conc. C h Conc. C	del / SN° c. Cyl N° cyl PSI	

s	ERVICE	REPORT		AirMonitors.co.uk	C
Customer : Site Name: HUNTINGO	Job DONSHIRE PATHFIND	No: 1122082016	Start I End I Time Start 12 Time End		
Reason for visit:	NOX REM	MOVAL			_
Action Taken: PRES READS COMPLE PUMP -22 SPAN AND ZERO COM SAMPLE FLOW CHECK NOX AND PUMP REM	IPLETED. ED 0.65 FROM SAI				
	Р	arts Used			
Model Used on:	Part No: (Must be completed)	Description:		Gty Involce	_
	Engineer: Visit Type:	Igwe Igwike Callout/service Complete site Inventory			

С	alibr	NC ation)x An ı/Line	alyse arity	er Rep	ort				AirMonitors.co.uk
42C			1		Se	rial No:	429808503			Report No. II220820
Pre-Service/ Repair Calibration										
							S	pan So	nrce D	tails
Result	N	0	N	02	N	OX]			
Gas	PPB	mV	PPB	mV	PPB	mV]		NO	NO2
External Zero	0.2		0.2		0.4]	Cyl. No:	D335356	
Injection of NO	340		51		302			Cyl. PSI:		
Injection of NO2								yl. Conc:	459	
Result	_	0	_	02	_	ox	Extern	al Se	ro Sour	ce Details
Gas	PPB	mV	PPB	mV	PPB	mV			On Site ZA	G:
External Zero									Cylinder:	
Injection of NO Injection of NO2									Scrubber:	2
	Dianim	(000)	Intest	id (NO)		heck	1			
NO	Utspia	y (PPB)	injecti	id (NO)		ed (03)	1		Å NO	0
NO2					Oş	opb			NO2	0
NO										
NO2							J	Moly Ef	Teciency	#DIV/0I
Requested Span	Gas	<u>P</u> Type		Serv		Line	earity Photo-me		k	
Point 200		0					Γ	44-7	ī	
160		0							İ	
120		0							ļ	
80 40		0							ł	
70		AIR							t	
0	a.c.ro		•		•		ender		ļ	

L		Therm	o NO	X		K	
						AirMonitors.co.ul	c
Job	Report No:	1122082	016				
	Serial No:	426608	503		Fault Message:	NONE	\Box
AmbF	Alarm 1 Alarm 2 Reading NO	Pre Stati		ppb	Alarm 1 Alarm 2 Amb Reading NO AmbReading NOx	Post Statistics	ppb
	ple flow Inst	0.697		4	Sample flow Inst		4
	aple flow Act	0.65		\dashv	Sample flow Act Cal Fact NO BKG		+
	ot NO COEF	7.1 0.94		\dashv	Cal fact NO BKG		+
	t NO2 COEF	1	_	\dashv	Cal fact NO2 COEF		+
	ot NOX BKG	8.2		┥	Cal Fact NOX BKG		†
	t NOX COEF	1.009	5	┪	Cal fact NOX COEF		†
	Pressure	200		mmHg	Pressure		mmHg
	PUMP	-22					<u> </u>
	—			⊣	L		╛
	E						<u> </u>
		(Bck a	approp bo	x)		(tick approp b	ox)
	MODEN	(lick :					
	MODEN	l lights ON:					
		I lights ON:					
	OATA Logger C	I lights ON: Operational:					

Thermo NOX

S	ERVICE	REPORT			itors.co.uk
Customer : Site Name: pathfinder	Job house huntingdonshire	> No: 1124082016			Aug 16 24-Aug-16
Reason for visit:	Nax Reinst	aliation			
Action Taken: installed 42c analyzer post reads completed posts reads and gas si	İ.	up connected pump re	eading -22.		
	P	arts Used			
Model Used on:	Part No: (Must be completed)	Description:	:	Gty	Involce
	ļ				
	Engineer: Visit Type:	Igwe Igwike Installation Complete site Invento	ry		

		Thern	no NO)	K			
						AirMonitors.co.ul	C
Jol	b Report No:	124082	016	7		Quality - Service - Irrametion	
	Serial No:	426608		┪	Fault Message:	none	Т
AmbF Sam Sam Cal F Cal fa Cal fac Cal Fa	Alarm 1 Alarm 2 Reading NO Readin	Pre Stat	istics	ppb ppb	Alarm 1 Alarm 2 Amb Reading NO AmbReading NOx Sample flow Inst Sample flow Act Cal Fact NO BKG Cal fact NO COEF Cal fact NOZ COEF Cal Fact NOX BKG Cal fact NOX COEF Pressure	Post Statistics 35.6 94.6 0.689 0.65 7 0.943 1 8.1 1.005 200	ppb ppb
	DATA Logger O	lights ON:	approp bo	x) no		(tick approp byes	
		lights ON: perational: inventory:				yes	

Thermo NOX

С	alibra		x An /Line		er Rep	ort				AirMonitors.co.uk
Model: 42c					Ser	ial No:	429808503			Report No. <u>#24082016</u>
	Pre-Service/ Repair Calibration									
							S	oan So	nrce De	tails
Result	N	0	N	02	N	ΟX				
Gas	PPB	mV	PPB	m/V	PPB	mV			NO	NO2
External Zero								Cyl. No:		
Injection of NO								Cyl. PSI:		
Injection of NO2							c	yl. Conc:		
	P	ost	Serv	rice	/Rep	air	Calibr		_	
<u> </u>	N	^	No.	02)X	Entern	al Se	ro Sour	ce Details
Gas	PPB	mV	PPB	mV	PPB	mV				
External Zero	0.49		0		0.49				On Site ZA	a: 🗵 📗
Injection of NO	349		48		395				Cylinder:	- 日日
Injection of NO2	546		70		300				Scrubber:	
NO NO2	Display	(PPB)	Injecte	G (NO)		heck ed (03)	: 		Å NO Å NO2	0
NO NO2					1			Moly Et	Teciency	#DIV/0I
Requested Span	Gas			Serv		Line	earity	Chec		
Point 200	N		+ 001	(me)	Stapial	(hho)	Photo-met	er (ppb)	т	
160	N								t	
120	N								İ	
80	N								I	
40	N								ļ	
0	ZERO	AIR			<u> </u>				Ţ	
						Blo	Hig	ender Mod High Con h Conc. C h Conc. C	del / SN° c. Cyl N° cyl PSI	

Additional Reason for visit: Please select Action Taken: pre zero and span checks serviced analyser rebuilt pump post service span and zero calibrated bottle oxidized calibrated percentage difference to pre checks difference both 5014 flow checked rebuilt pumps flow calibrated Part No: (Must be completed) Part No: (Must be complet	Cuctomer : huntingdon		REPORT No: bf81116hunting	Start Date Start Time End Date End Time	Quality - Se	itors.co.uk 11/16 08:30 08/11/16 11:30			
pre zero and span checks serviced analyser rebuilt pump post service span and zero calibrated bottle oxidized calibrated percentage difference to pre checks difference both 5014 flow checked rebuilt pumps flow calibrated Part No: (Must be completed) Part No: (Must be comple	Additional Reason for								
Model Used on: Part No: (Must be completed) Description: Gity Involce	pre zero and span che serviced analyser rebuilt pump post service span and bottle oxidized calibra both 5014 flow checked rebuilt pumps	zero calibrated	ference to pre checks	difference					
Model Used on: oompleted) 8212		Pa	arts Used						
4800 o ring 4 diffon60 small dfu 1 sk81744 pump kit 1 sk2988 pump kit 2 Engineer: Ben Freebrey For Office Use Only:	Model Used on:		Description:		Gty	Involce			
4800 o ring 4 diffun60 small dfu 1 ek81744 pump kit 1 ek2888 pump kit 2 Engineer: Ben Freebrey For Office Use Only:		9212	o ring		-				
Engineer: Ben Freebrey For Office Use Only:		4800	o ring						
Engineer: Ben Freebrey For Office Use Only:									
Engineer: Ben Freebrey For Office Use Only:									
		Territorial Services	рыпр кк						
	Englesse	Ren Freebrev	For Office Use O	nlv:					
North Types: Routine Service TTC		Action 1 December 19	I SHE SHIPPE GUNC SHIP	y-					
FIRE 139C. Indiana del rice									
Complete site Inventory VDT A		e Service 🔻	ттѕ	4					
	Visit Type: Routine								

		Thern	no NO)	(
Jo	b Report No: Serial No:	bf81116hunting 42660		æ	Fault Message:	AirMonitors.co.ul	k: T
				<u> </u>			-
		Pre Sta	tistics]	Post Statistics]
	Alarm 1				Alarm 1		I
	Alarm 2			_	Alarm 2		
	Reading NO			ppb	Amb Reading NO	40.1	ppb
	Reading NOx			ppb	AmbReading NOx	60	ppb
	ple flow Inst			\dashv	Sample flow Inst	0.624	+
	nple flow Act			\dashv	Sample flow Act	0.65	+
	Fact NO BKG sot NO COEF			\dashv	Cal Fact NO BKG Cal fact NO COEF	1.303	+
	of NO2 COEF	0.94		\dashv	Cal fact NO2 COEF	1.303	+
	not NOX BKG		,	\dashv	Cal Fact NOX BKG	8.8	+
	t NOX COEF			\dashv	Cal fact NOX COEF	0.893	+
Out lac	Pressure	198		mmHg	Pressure	208	mmHg
				-	-		1
							1
	MODE		approp bo	x) no		(tick approp b	ox)
		M lights ON:					
	DATA Logger	M lights ON:					
	DATA Logger Completed s	M lights ON: Operational: te inventory:					
	DATA Logger Completed si	M lights ON:					

Thermo NOX

	Therm	ю 5014	ı		AirMonitors.co.uk	
Job Report No: Serial No:	bf81116hunting	don-servic	e	Fault Message:		
	Pre Stat	istics		[Post Statistics	
Alarm 1			_	Alarm 1		
Alarm 2			4	Alarm 2		
AmbReading PM Amb RH			┥	AmbReading PM Amb RH	84.6	
Sample RH			┨	Sample RH	30.9	
Amb Tmp			1	Amb Tmp	0.5	
Sample Tmp				Sample Tmp	16.2	
Vaouum				Vaouum	26.3	
Flow	15.6	4	4	Flow	16.7	
			┨	<u> </u>		
			┨	İ		
]			
			4	-		
			┙	L		
MODE	(tick EM lights ON:	approp box	r) no		(tick approp box	no 🗆
DATA Logger	EM lights ON:		no 			
DATA Logger	EM lights ON: r Operational: lite inventory:	yes			yes	

Thermo 5014 (2.5)

	Thermo 501	4	AirMonitors.co.uk.
Job Report No: Serial No:	bf81116huntingdon-servi	Fault Message:	
	Pre Statistics		Post Statistics
Alarm 1		Alarm 1	
Alarm 2 AmbReading PM	37.5	Alarm 2 AmbReading PM	
Amb RH	100	Amb RH	100
Sample RH	26	8ample RH	31
Amb Tmp	-1.6	Amb Tmp	0.2
Sample Tmp Vacuum	19.5 54.5	8ample Tmp Vaouum	18.5 47.6
Flow	15.78	Flow	16.7
MODE	(tick approp be yes M lights ON:	ox) no	(tick approp box) yes no
DATA Logger	yes M lights ON:		yes no
	M lights ON:		

Thermo 5014

С	alibra		x An /Line		er Rep	ort					Monitors.co.uk
del: thermo			l		Ser	rial No:	426808503			Re	port No. bf81116hu
	P	re-S	ervi	ce/	Rep	air	Calib	ratio	n		
							s	pan So	mrce I	Detai	ls
Result	N	0	N	02	N	DΧ					
Gas	PPB	mV	PPB	m/V	PPB	mV			NO)	NO2
External Zero	0.1		0.3		0.4			Cyl. No:			
Injection of NO	240		58		298			Cyl. PSI:			
Injection of NO2								yl. Conc:	459		
	N			02		OX.	<u>Exten</u>			TOP	<u>Netails</u>
Gas	PPB	mV	PPB	m/V	PPB	mV			On Site 2	AC.	7
External Zero	0		0		0						
Injection of NO	371		104		450				Cylinder:		HI
Injection of NO2	51.		161		100				Scrubber	-	
NO NO2	Display	(PPB)	Injecto	G ed (NO)		heck			Å NO		0
NO											
NO2								Moly El	feciency		#DIV/0I
Requested Span	Gas			Serv		Line	Photo-me		<u>ck</u>		
200	N								I		
160	N								ł		
120 80	N								ł		
40	N								t		
0	ZERO	AIR							Ī		
						Blo	Hig	ender Mod High Con th Conc. Co	del / SN° c. Cyl N° cyl PSI		

Appendix D: Map(s) of Monitoring Locations and AQMAs

Figure D.1: Map indicating location of Automatic NO_2 , PM_{10} and $PM_{2.5}$ monitor:

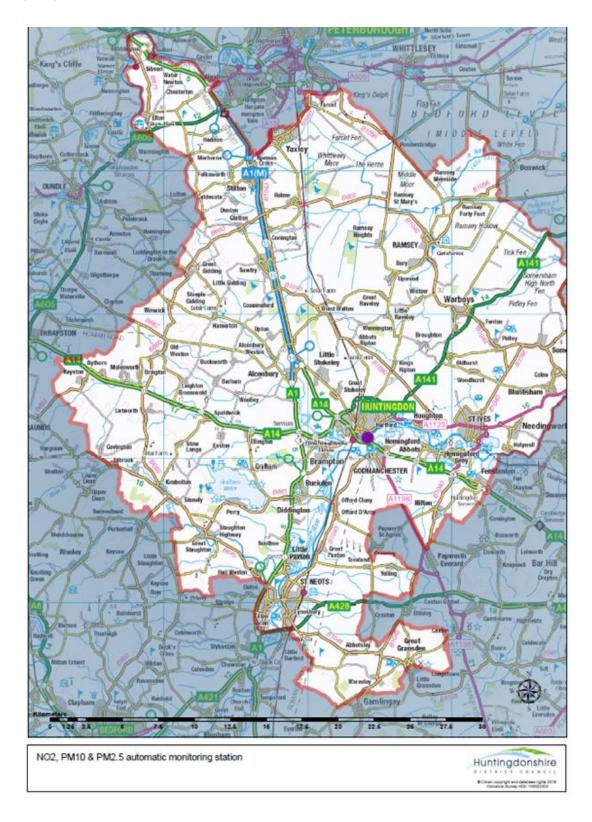


Figure D.2: Mapvshowing location of Automatic NO₂, PM₁₀ and PM_{2.5} monitor:

Figure D.3: Close up of location of Automatic NO₂, PM₁₀ and PM_{2.5} monitor:

Please note - The AQMS can be seen in relation to the AQMA, on figure D5 as 'PFH'.

Figure D.4: Map indicating location of non automatic (Diffusion Tube) NO₂ monitoring locations:

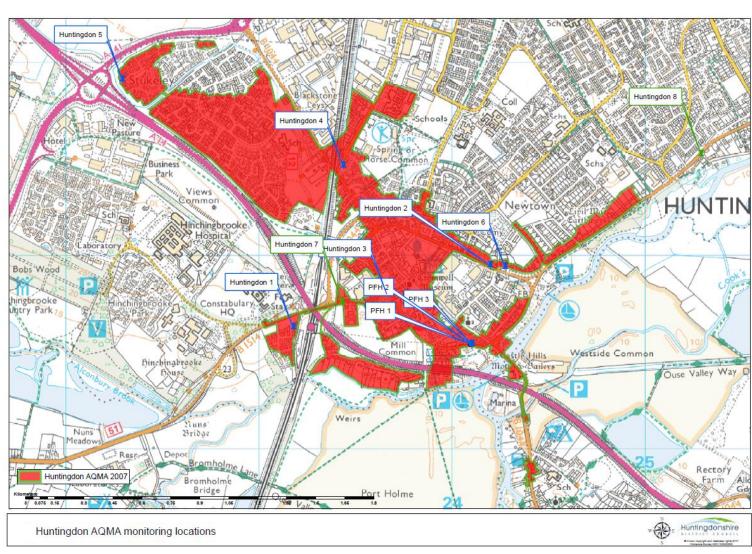


Figure D.5: Huntingdon AQMA Diffusion Tube NO₂ monitoring locations:

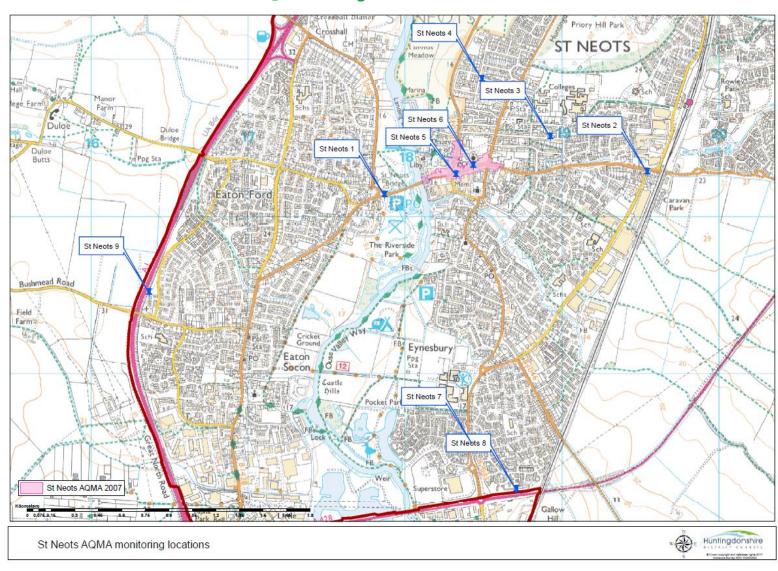
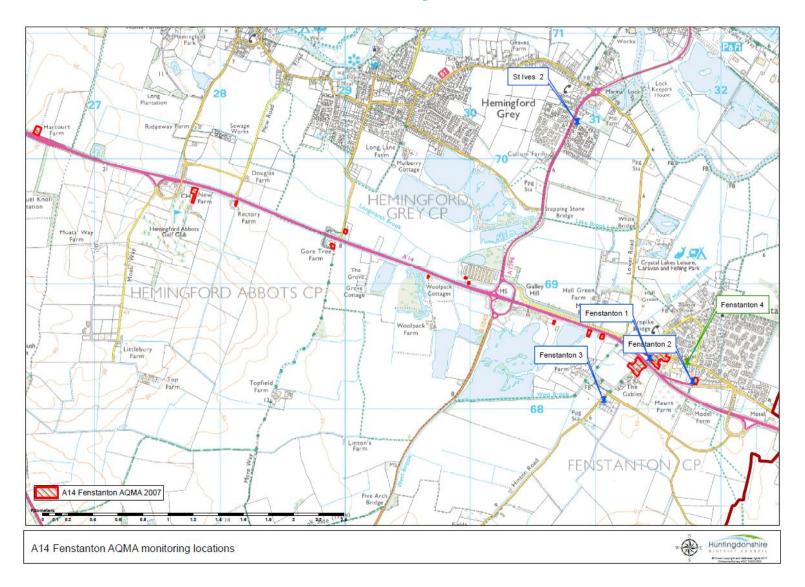



Figure D.6: St Neots AQMA Diffusion Tube NO₂ monitoring locations:

Figure D.7: A14 Fenstanton AQMA Diffusion Tube NO₂ monitoring locations:

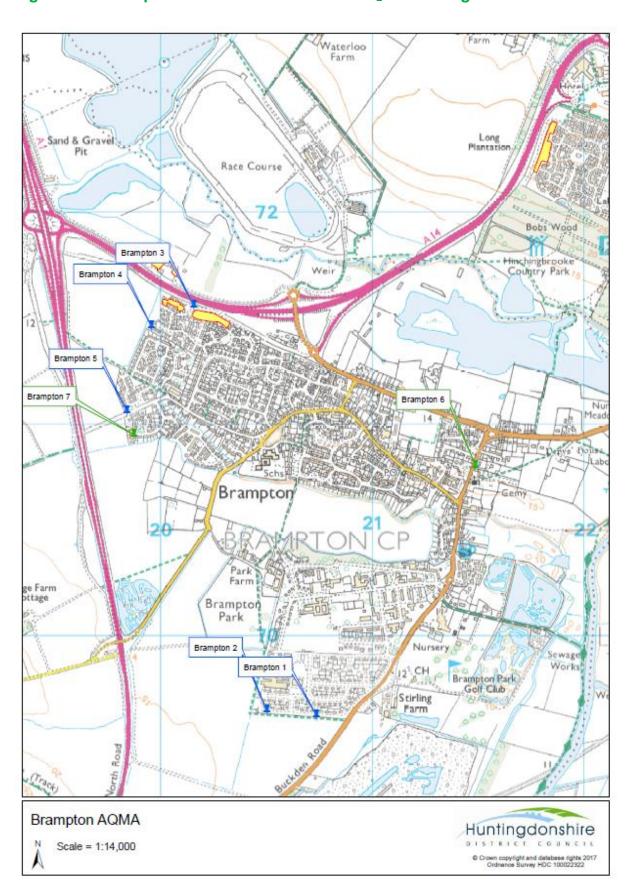


Figure D.8: Brampton AQMA Diffusion Tube NO₂ monitoring locations:

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ⁴	
Poliularit	Concentration	Measured as
Nitrogen Dioxide	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean
(NO ₂)	40 μg/m ³	Annual mean
Particulate Matter	50 μg/m³, not to be exceeded more than 35 times a year	24-hour mean
(PM ₁₀)	40 μg/m ³	Annual mean
	350 µg/m³, not to be exceeded more than 24 times a year	1-hour mean
Sulphur Dioxide (SO ₂)	125 µg/m³, not to be exceeded more than 3 times a year	24-hour mean
	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean

⁴ The units are in micrograms of pollutant per cubic metre of air (µg/m³).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
AQMS	Air Quality Monitoring Station
ASR	Air quality Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England
EU	European Union
FDMS	Filter Dynamics Measurement System
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide