

# Huntingdonshire District Council Air Quality Annual Status Report (ASR) for 2015

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

Date March 2017

| Local Authority<br>Officer | Dave Bass                                                   |
|----------------------------|-------------------------------------------------------------|
| Department                 | Environment Protection – Community                          |
| Address                    | Pathfinder House, St Mary's Street,<br>Huntingdon, PE29 3TN |
| Telephone                  | 01480 388363                                                |
| E-mail                     | Dave.bass@huntingdonshire.gov.uk                            |
| Report Reference<br>number | M6949                                                       |
| Date                       | 23/03/2017                                                  |

# Executive Summary: Air Quality in Our Area Air Quality in Huntingdonshire

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas<sup>1,2</sup>.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around  $\pm 16$  billion<sup>3</sup>.

Nitrogen Dioxide is the only pollutant that currently exceeds the objective level within the district. This is predominately caused by the A14 and to a lesser extent the A1 that runs straight through the district. However, local traffic within the market towns is also causing some elevated levels.

Huntingdonshire currently has four AQMA's. (1) Huntingdon, (2) St Neots, (3) and Brampton (4) A14 Hemingford to Fenstanton. As a whole the, level of nitrogen dioxide has fallen in the last five years and is mostly below the annual limit. However, Huntingdonshire is still experiencing a small hotspot which is showing readings above the annual limit.

## **Actions to Improve Air Quality**

The re-routing of the A14 moves the A14 away from residential areas and predicts that all areas currently in an AQMA will see their NO<sup>2</sup> and PM<sup>10</sup> levels significantly reduce once the scheme has been built. While some areas will increase slightly predictions have shown that these are all still below EU limit values. Huntingdonshire District Council was at the forefront of securing a satisfactory result for our residents.

i

<sup>&</sup>lt;sup>1</sup> Environmental equity, air quality, socioeconomic status and respiratory health, 2010

<sup>&</sup>lt;sup>2</sup> Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> Defra. Abatement cost guidance for valuing changes in air quality, May 2013

# **Local Priorities and Challenges**

Huntingdonshire is currently a growth area and our main priority and challenge is ensuring that this growth does not cause any exceedances of AQ objectives.

## How to Get Involved

You can improve air quality in your own area by using public transport or walking for small journeys, purchase energy efficient goods, make your home more energy efficient and purchase a low emission car, in some cases HDC can provide grants <a href="http://www.huntingdonshire.gov.uk/">http://www.huntingdonshire.gov.uk/</a> but the energy savings trust can provide further advice <a href="http://www.energysavingtrust.org.uk/">http://www.energysavingtrust.org.uk/</a>.

# **Table of Contents**

| Executive Summary: Air Quality in Our Areai                                   |
|-------------------------------------------------------------------------------|
| Air Quality in Huntingdonshire District Councili                              |
| Actions to Improve Air Qualityi                                               |
| Local Priorities and Challengesii                                             |
| How to Get Involvedii                                                         |
| 1 Local Air Quality Management                                                |
| 2 Actions to Improve Air Quality                                              |
| 2.1 Air Quality Management Areas2                                             |
| 2.2 Progress and Impact of Measures to address Air Quality in Huntingdonshire |
| District Council                                                              |
| 2.3 PM <sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or |
| Concentrations                                                                |
| 3 Air Quality Monitoring Data and Comparison with Air Quality                 |
| Objectives and National Compliance7                                           |
| 3.1 Summary of Monitoring Undertaken7                                         |
| 3.1.1 Automatic Monitoring Sites7                                             |
| 3.1.2 Non-Automatic Monitoring Sites                                          |
| 3.2 Individual Pollutants7                                                    |
| 3.2.1 Nitrogen Dioxide (NO <sub>2</sub> )                                     |
| 3.2.2 Particulate Matter (PM <sub>10</sub> )                                  |
| 3.2.3 Particulate Matter (PM <sub>2.5</sub> )                                 |
| Appendix A: Monitoring Results                                                |
| Appendix B: Full Monthly Diffusion Tube Results for 2015 18                   |
| Appendix C: Supporting Technical Information / Air Quality Monitoring         |
| Data QA/QC                                                                    |
| Appendix D: Map(s) of Monitoring Locations                                    |
| Appendix E: Summary of Air Quality Objectives in England                      |
| Glossary of Terms                                                             |

## List of Tables

| Table 2.1 | Declared Air Quality Management Areas          | 2  |
|-----------|------------------------------------------------|----|
| Table 2.2 | Progress on Measures to Improve Air Quality    | 4  |
| Table A.1 | Details of Automatic Monitoring Sites          | 9  |
| Table A.2 | Details of Non-Automatic Monitoring Sites      | 9  |
| Table A.3 | Annual Mean NO <sub>2</sub> Monitoring Results | 14 |

| Table A.4 | 1-hour Mean NO <sub>2</sub> Monitoring Results        | 16 |
|-----------|-------------------------------------------------------|----|
| Table A.5 | Annual Mean PM <sub>10</sub> Monitoring Results       | 16 |
| Table A.6 | 24-hour Mean PM <sub>10</sub> Monitoring Results      | 17 |
| Table A.7 | PM <sub>2.5</sub> Monitoring Results                  | 17 |
| Table B.1 | NO <sub>2</sub> Monthly Diffusion Tube Results – 2015 | 18 |
| Table E.1 | Air Quality Objectives in England                     | 41 |

## List of Figures

| Figure C.1 | Diffusion Tube Bias Adjustment                     | 20 |
|------------|----------------------------------------------------|----|
| Figure C.2 | Third Party QA/QC reports                          | 21 |
| Figure C.3 | NO <sub>2</sub> monitoring station service reports | 31 |
| Figure D.1 | Non automatic NO <sub>2</sub> monitoring locations | 35 |
| Figure D.2 | Automatic NO2, PM10 & PM2.5 monitoring location    | 36 |

# 1 Local Air Quality Management

This report provides an overview of air quality in Huntingdonshire District Council during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Huntingdonshire District Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

# 2 Actions to Improve Air Quality

## 2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of AQMAs declared by Huntingdonshire District Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at

http://www.huntingdonshire.gov.uk/environmental-issues/noise-nuisancepollution/air-quality/

| AQMA Name                  | Pollutants<br>and Air<br>Quality<br>Objectives | City / Town | One Line<br>Description                                                                                                                                     | Action Plan                                                                                                                                                                                   |
|----------------------------|------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AQMA Area 1:<br>Huntingdon | NO₂ annual<br>mean                             | Huntingdon  | An area<br>encompassing<br>approximately<br>2831 domestic<br>properties affected<br>by the A14, A141,<br>B1044, B1514 and<br>Huntingdon Inner<br>Ring Road. | Cambridgeshire<br>Joint Air Quality<br>Action Plan:<br><u>http://www.hunting</u><br><u>donshire.gov.uk/m</u><br><u>edia/1645/joint-</u><br><u>air-quality-action-</u><br><u>plan-2010.pdf</u> |
| AQMA Area 2:<br>St Neots   | NO₂ annual<br>mean                             | St Neots    | An area<br>encompassing<br>approximately 115<br>domestic<br>properties affected<br>by local traffic in<br>the town centre.                                  | Cambridgeshire<br>Joint Air Quality<br>Action Plan:<br><u>http://www.hunting</u><br><u>donshire.gov.uk/m</u><br><u>edia/1645/joint-</u><br><u>air-quality-action-</u><br><u>plan-2010.pdf</u> |
| AQMA Area 3:<br>Brampton   | NO2 annual<br>mean                             | Brampton    | An area<br>encompassing<br>approximately 82<br>domestic<br>properties affected<br>by the A14.                                                               | Cambridgeshire<br>Joint Air Quality<br>Action Plan:<br><u>http://www.hunting</u><br><u>donshire.gov.uk/m</u><br><u>edia/1645/joint-</u><br><u>air-quality-action-</u>                         |

#### Table 2.1 – Declared Air Quality Management Areas

| AQMA Name                                   | Pollutants<br>and Air<br>Quality<br>Objectives | City / Town | One Line<br>Description                                                                       | Action Plan                                                                                                                                                                                   |
|---------------------------------------------|------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                |             |                                                                                               | plan-2010.pdf                                                                                                                                                                                 |
| AQMA Area 4:<br>Hemingford to<br>Fenstanton | NO <sub>2</sub> annual<br>mean                 | Fenstanton  | An area<br>encompassing<br>approximately 62<br>domestic<br>properties affected<br>by the A14. | Cambridgeshire<br>Joint Air Quality<br>Action Plan:<br><u>http://www.hunting</u><br><u>donshire.gov.uk/m</u><br><u>edia/1645/joint-</u><br><u>air-quality-action-</u><br><u>plan-2010.pdf</u> |

## 2.2 Progress and Impact of Measures to address Air Quality in Huntingdonshire District Council

Measurement 1: The A14 upgrade has been agreed and, at the time of writing, currently being built with an estimated completion time of 2020.

Measurement 2: Implementation of air quality policies in local plan is currently on going.

Measurement 3 Development of an effective freight partnership. Now that the A14 will be moved away from the residential areas it is not expected that freight will cause a significant issue within Huntingdonshire.

Measurement 4 Inclusion of Huntingdonshire in the Quality Bus Partnership.

Cambridgeshire County Council has so far not extended the QBP to outside Cambridge itself.

Measurement 5: The guided bus route is complete.

Measurement 6: Traffic lights at St Neots have been completed.

| Measure<br>No. | Measure                                                              | EU Category                                      | EU<br>Classificati<br>on                            | Lead Authority                      | Planning<br>Phase | Implementa<br>tion Phase | Key<br>Performance<br>Indicator | Target<br>Pollution<br>Reduction in<br>the AQMA | Progress to<br>Date         | Estimated<br>Completio<br>n Date | Comments                                                                                                                                                                                                                             |
|----------------|----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------|-------------------|--------------------------|---------------------------------|-------------------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Title                                                                | Select from<br>the categories<br>in blue box     | Select from<br>the<br>subcategorie<br>s in blue box |                                     | Date              | Date                     |                                 |                                                 |                             | Date                             |                                                                                                                                                                                                                                      |
| 1              | Re-routing of<br>A14 away from<br>settlements                        | Traffic<br>Management                            | Strategic<br>highway<br>improvements                | Highways England                    | Current           | End of 2016              |                                 | 1, 3 & 4                                        | Scheme has been<br>approved | 2020                             | Expected to<br>improve all A14<br>AQMA's.                                                                                                                                                                                            |
| 2              | Implementation<br>of air quality<br>policies in the<br>local plan.   | Policy<br>Guidance and<br>Development<br>Control | Air Quality<br>Planning and<br>Policy<br>Guidance   | Huntingdonshire<br>District Council | Ongoing           | Ongoing                  |                                 | All                                             |                             |                                  | Ongoing                                                                                                                                                                                                                              |
| 3              | Development of<br>an effective<br>freight<br>partnership             | Freight and<br>Delivery<br>Management            | Other                                               | Unknown                             | Unknown           | Unknown                  | Unknown                         | All                                             | Unknown                     | Unknown                          | Now the A14<br>improvement has<br>been agreed and<br>Highways England<br>have opened<br>communication on<br>improving the<br>A428 it is<br>unknown if an<br>effective fright<br>partnership would<br>have any<br>significant effect. |
| 4              | Inclusion of<br>Huntingdonshire<br>in the Quality<br>Bus Partnership | Alternatives to<br>private vehicle<br>use        | Other                                               | Cambridgeshire<br>County Council    | Ongoing           | Unknown                  |                                 | All                                             | None                        | None                             | At present CCC<br>do not consider<br>that it is feasible to<br>run the QBP<br>outside of the city<br>of Cambridge                                                                                                                    |

## Table 2.2 – Progress on Measures to Improve Air Quality

| Measure<br>No. | Measure                                                                                                                      | EU Category                                 | EU<br>Classificati<br>on             | Lead Authority                   | Planning<br>Phase | Implementa<br>tion Phase | Key<br>Performance<br>Indicator | Target<br>Pollution<br>Reduction in<br>the AQMA | Progress to<br>Date | Estimated<br>Completio<br>n Date | Comments                                                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------|-------------------|--------------------------|---------------------------------|-------------------------------------------------|---------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 5              | Completion and<br>opening of<br>Cambridgeshire<br>Guided Busway                                                              | Transport<br>Planning and<br>Infrastructure | Bus route<br>improvements            | Cambridgeshire<br>County Council | Completed         | Completed                |                                 | All                                             | Completed           | Completed                        | The guided<br>busway was<br>opened in August<br>2011 from<br>Cambridge<br>Huntingdon and<br>extended to<br>Peterborough in<br>July 2012. |
| 6              | Change to traffic-<br>light system in St<br>Neots High street<br>as specified in<br>the St Neots<br>Markets Town<br>Strategy | Traffic<br>Management                       | Strategic<br>highway<br>improvements | Cambridgeshire<br>County Council | Completed         | Completed                |                                 | 2                                               | Completed 2013      | Completed 2013                   |                                                                                                                                          |

## 2.3 PM<sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of  $PM_{2.5}$  (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that  $PM_{2.5}$  has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Huntingdonshire District Council is taking the following measures to address PM<sub>2.5</sub>: We expect that the upgrade to the A14 which moves the A14 away from the major residential areas will reduce PM<sub>2.5</sub> significantly. In 2014 Huntingdonshire District Council joined with Public Health England and the other Cambridgeshire authorities to develop the transport and health joint strategic needs survey which focused on PM<sub>2.5</sub> from transport, see <u>http://www.cambridgeshireinsight.org.uk/file/2552/download</u> Huntingdonshire District Council is intending to review and update the Council's Air Quality Action Plan.

# 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

# 3.1 Summary of Monitoring Undertaken

## 3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Huntingdonshire District Council undertook automatic (continuous) monitoring at one site during 2015. Table A.1 in Appendix A shows the site details.

NB. Local authorities do not have to report annually on the following pollutants: 1,3 butadiene, benzene, carbon monoxide and lead, unless local circumstances indicate there is a problem. National monitoring results are available at <u>https://uk-air.defra.gov.uk/interactive-map</u>.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

## 3.1.2 Non-Automatic Monitoring Sites

Huntingdonshire District Council undertook non- automatic (passive) monitoring of  $NO_2$  at 44 sites during 2015. Table A.2 in Appendix A shows the details of the sites.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

# 3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

## 3.2.1 Nitrogen Dioxide (NO<sub>2</sub>)

Table A.3 in Appendix A compares the ratified and adjusted monitored NO<sub>2</sub> annual mean concentrations for the past 5 years with the air quality objective of  $40\mu g/m^3$ . HDC is aware of some issues with 2015 results which are being investigated.

For diffusion tubes, the full 2015 dataset of monthly mean values is provided in Appendix B.

Table A.4 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> hourly mean concentrations for the past 5 years with the air quality objective of  $200\mu g/m^3$ , not to be exceeded more than 18 times per year.

The only exceedances noted were from the diffusion tubes located in a small area in one of the AQMA's. However, the automatic monitoring station that is co-located at Pathfinder House did not identify any exceedences during the same period.

## 3.2.2 Particulate Matter (PM<sub>10</sub>)

Table A.5 in Appendix A compares the ratified and adjusted monitored  $PM_{10}$  annual mean concentrations for the past 5 years with the air quality objective of  $40\mu g/m^3$ .

Table A.6 in Appendix A compares the ratified continuous monitored  $PM_{10}$  daily mean concentrations for the past 5 years with the air quality objective of  $50\mu g/m^3$ , not to be exceeded more than 35 times per year.

## 3.2.3 Particulate Matter (PM<sub>2.5</sub>)

Table A.7 in Appendix A presents the ratified and adjusted monitored  $PM_{2.5}$  annual mean concentrations for the past 5 years.

 $PM_{2.5}$  monitoring has only occurred in the last couple of years. The results show that the levels are slightly lower in 2015 than in 2014, although the figures are only slightly higher than the 2013 background concentrations as supplied by Defra.

# **Appendix A: Monitoring Results**

Table A.1 – Details of Automatic Monitoring Sites

| Site ID | Site Name  | Site<br>Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Monitoring<br>Technique | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road (m)<br><sup>(2)</sup> | Inlet<br>Height<br>(m) |
|---------|------------|--------------|---------------------|---------------------|-------------------------|-------------|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|------------------------|
|         |            |              |                     |                     | NO <sub>2</sub>         |             | Chemiluminescent        |                                                           |                                                                 |                        |
| PFH     | Huntingdon | Roadside     | 524060              | 271532              | PM <sub>10</sub>        | Y           | Beta Attenuation        | 3                                                         | 7                                                               | 2.5                    |
|         |            |              |                     |                     | PM <sub>2.5</sub>       |             | Beta Attenuation        |                                                           |                                                                 |                        |

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

#### Table A.2 – Details of Non-Automatic Monitoring Sites

| Site ID | Site<br>Name | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height (m) |
|---------|--------------|-----------|---------------------|---------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------|
|         | St Neots 5   | Kerbside  | 517869              | 260132              | NO <sub>2</sub>         | No              | 22m                                                       | 1                                                            | No                                                      | 3          |
|         | St Neots 3   | Kerbside  | 518323              | 260263              | NO <sub>2</sub>         | Yes             | 0m                                                        | 1                                                            | No                                                      | 3          |

| Site ID | Site<br>Name   | Site Type           | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height (m) |
|---------|----------------|---------------------|---------------------|---------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------|
|         | St Neots 1     | Urban<br>Background | 518925              | 260503              | NO <sub>2</sub>         | No              | 4m                                                        | 1                                                            | No                                                      | 3          |
|         | St Neots 2     | Urban<br>Background | 518489              | 260871              | NO <sub>2</sub>         | No              | 3m                                                        | 1                                                            | No                                                      | 3          |
|         | St Neots 4     | Kerbside            | 518433              | 260321              | NO <sub>2</sub>         | Yes             | 0m                                                        | 1                                                            | No                                                      | 3          |
|         | Eynesbury      | Suburban            | 518424              | 258556              | $NO_2$                  | No              | 0m                                                        | 17                                                           | No                                                      | 1.75       |
|         | Eaton<br>Socon | Suburban            | 516370              | 259514              | NO <sub>2</sub>         | No              | 3m                                                        | 5 (24m to trunk<br>road)                                     | No                                                      | 3          |
|         | Southoe        | Roadside            | 518714              | 264308              | NO <sub>2</sub>         | No              | 24m                                                       | 2 (14 to trunk<br>road)                                      | No                                                      | 1.75       |
|         | Buckden        | Roadside            | 519197              | 267955              | NO <sub>2</sub>         | No              | 3m                                                        | 1                                                            | No                                                      | 3          |
|         | Buckden 2      | Roadside            | 519082              | 267433              | NO <sub>2</sub>         | No              | 0m                                                        | 1 (35m to trunk<br>road)                                     | No                                                      | 1.75       |
|         | Brampton 1     | Roadside            | 520155              | 271561              | NO <sub>2</sub>         | Yes             | 32m                                                       | 2                                                            | No                                                      | 3          |
|         | Brampton 2     | Suburban            | 519839              | 271061              | NO <sub>2</sub>         | No              | 18m                                                       | 0.5                                                          | No                                                      | 3          |
|         | Brampton 3     | Suburban            | 519756              | 269900              | NO <sub>2</sub>         | No              | 23m                                                       | 0.5 (40m to trunk<br>road)                                   | No                                                      | 1.5        |

| Site ID | Site<br>Name    | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height (m) |
|---------|-----------------|-----------|---------------------|---------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------|
|         | Brampton 4      | Suburban  | 520734              | 269623              | NO <sub>2</sub>         | No              | 10m                                                       | 0.5                                                          | No                                                      | 3          |
|         | Catworth        | Rural     | 508409              | 274876              | NO <sub>2</sub>         | No              | 42m                                                       | 42 (42 to trunk<br>road)                                     | No                                                      | 3          |
|         | Alconbury       | Roadside  | 518954              | 276010              | NO <sub>2</sub>         | No              | 6m                                                        | 2                                                            | No                                                      | 3          |
|         | Sawtry          | Suburban  | 517440              | 283443              | NO <sub>2</sub>         | No              | 4m                                                        | 2                                                            | No                                                      | 3          |
|         | Stibbington     | Roadside  | 508326              | 298684              | NO <sub>2</sub>         | No              | 22m                                                       | 2 (8m to trunk<br>road)                                      | No                                                      | 3          |
|         | Huntingdon<br>1 | Kerbside  | 524198              | 271949              | NO <sub>2</sub>         | Yes             | 0m                                                        | 1                                                            | No                                                      | 1.75       |
|         | Huntingdon<br>2 | Kerbside  | 523661              | 271802              | NO <sub>2</sub>         | Yes             | 0m                                                        | 1                                                            | No                                                      | 3          |
|         | Huntingdon<br>3 | Kerbside  | 523435              | 272464              | NO <sub>2</sub>         | Yes             | 3m                                                        | 1                                                            | No                                                      | 3          |
|         | Huntingdon<br>4 | Roadside  | 522293              | 272909              | NO <sub>2</sub>         | Yes             | 3m                                                        | 2                                                            | No                                                      | 3          |
|         | Huntingdon<br>5 | Roadside  | 524274              | 271939              | NO <sub>2</sub>         | Yes             | 4m                                                        | 2                                                            | No                                                      | 3          |
|         | Huntingdon<br>6 | Suburban  | 523177              | 271627              | NO <sub>2</sub>         | No              | 3m                                                        | 2                                                            | No                                                      | 3          |

| Site ID | Site<br>Name      | Site Type           | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height (m) |
|---------|-------------------|---------------------|---------------------|---------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------|
|         | Godmanch<br>ester | Roadside            | 525319              | 270571              | NO <sub>2</sub>         | No              | 3m                                                        | 12 (34 to trunk<br>road)                                     | No                                                      | 3          |
|         | PFH1              | Roadside            | 524102              | 271540              | NO <sub>2</sub>         | Yes             | 8m                                                        | 6                                                            | Yes                                                     | 3.6        |
|         | PFH2              | Roadside            | 524102              | 271540              | NO <sub>2</sub>         | Yes             | 8m                                                        | 6                                                            | Yes                                                     | 3.6        |
|         | PFH3              | Roadside            | 524102              | 271540              | NO <sub>2</sub>         | Yes             | 8m                                                        | 6                                                            | Yes                                                     | 3.6        |
|         | Fenstanton<br>1   | Roadside            | 531427              | 268397              | NO <sub>2</sub>         | Yes             | 20m                                                       | 2 (20 to trunk<br>road)                                      | No                                                      | 3          |
|         | Fenstanton<br>2   | Roadside            | 531770              | 268215              | NO <sub>2</sub>         | Yes             | 14m                                                       | 2 (23m to trunk<br>road)                                     | No                                                      | 3          |
|         | St Ives           | Urban<br>Background | 531206              | 272334              | NO <sub>2</sub>         | No              | 5m                                                        | 1                                                            | No                                                      | 3          |
|         | Ramsey            | Urban<br>Background | 528433              | 284936              | NO <sub>2</sub>         | No              | 4m                                                        | 2                                                            | No                                                      | 3          |
|         | Buckden 3         | Roadside            | 519161              | 267624              | NO <sub>2</sub>         | No              | 0m                                                        | 1                                                            | No                                                      | 2          |
|         | Buckden 4         | Roadside            | 518981              | 267370              | NO <sub>2</sub>         | No              | 0m                                                        | 12 (10m to trunk<br>road)                                    | No                                                      | 1.75       |
|         | Hilton *          | Suburban            | 528961              | 266718              | NO <sub>2</sub>         | No              | 2.5m                                                      | 3                                                            | No                                                      | 3          |

| Site ID | Site<br>Name                         | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height (m) |
|---------|--------------------------------------|-----------|---------------------|---------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------|
|         | Fenstanton<br>3 *                    | Rural     | 531063              | 268063              | NO <sub>2</sub>         | No              | 6m                                                        | 1.5                                                          | No                                                      | 3          |
|         | St Ives 2 *                          | Suburban  | 530850              | 270286              | NO <sub>2</sub>         | No              | 6m                                                        | 1.5                                                          | No                                                      | 3          |
|         | Wood<br>Green<br>Animal<br>Shelter * | Rural     | 526250              | 268264              | NO <sub>2</sub>         | No              | 0m                                                        | 235m                                                         | No                                                      | 3          |
|         | Huntingdon<br>7 *                    | Kerbside  | 523401              | 271755              | NO2                     | Yes             | 10m                                                       | 2                                                            | No                                                      | 3          |
|         | Alconbury<br>2 *                     | Suburban  | 518955              | 275520              | NO <sub>2</sub>         | No              | 10m                                                       | 1                                                            | No                                                      | 3          |
|         | Brampton 5                           | Suburban  | 519956              | 271461              | NO <sub>2</sub>         | No              | 6m                                                        | 1.5                                                          | No                                                      | 3          |
|         | Brampton 6<br>*                      | Suburban  | 519874              | 270948              | NO <sub>2</sub>         | No              | 7m                                                        | 1.5                                                          | No                                                      | 3          |
|         | Brampton 7                           | Suburban  | 520500              | 269646              | NO <sub>2</sub>         | No              | 10m                                                       | 1.5                                                          | No                                                      | 3          |
|         | Offord<br>Cluny *                    | Suburban  | 522086              | 267508              | NO <sub>2</sub>         | No              | 1.5m                                                      | 1.5                                                          | No                                                      | 3          |

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

(2) N/A if not applicable.

## Table A.3 – Annual Mean NO2 Monitoring Results

| Site ID Site Type | Monitoring          | Valid Data     | Valid Data                              | NO <sub>2</sub> Ar                 | nual Mean | Concentra | ition (μg/m | <sup>3</sup> ) <sup>(3)</sup> |      |
|-------------------|---------------------|----------------|-----------------------------------------|------------------------------------|-----------|-----------|-------------|-------------------------------|------|
| Site ID           | Site Type           | Туре           | Monitoring<br>Period (%) <sup>(1)</sup> | Capture 2015<br>(%) <sup>(2)</sup> | 2011      | 2012      | 2013        | 2014                          | 2015 |
| PFH               | Roadside            | Automatic      |                                         |                                    | 37.6      | 55.5      | 45.0        | 38.9 <sup>(1)</sup>           | 32.2 |
| St Neots 5        | Kerbside            | Diffusion Tube | 100                                     | 100                                | 23.5      | 22.8      | 20.6        | 19.6                          | 20.5 |
| St Neots 3        | Kerbside            | Diffusion Tube | 100                                     | 100                                | 39.3      | 35.9      | 36.8        | 36.0                          | 31.7 |
| St Neots 1        | Urban<br>Background | Diffusion Tube | 100                                     | 100                                | 18.2      | 18.5      | 18.7        | 19.0                          | 16.6 |
| St Neots 2        | Urban<br>Background | Diffusion Tube | 100                                     | 100                                | 16.7      | 15.8      | 15.4        | 15.3                          | 13.0 |
| St Neots 4        | Kerbside            | Diffusion Tube | 100                                     | 100                                | 37.4      | 35.5      | 31.0        | 31.6                          | 28.7 |
| Eynesbury         | Suburban            | Diffusion Tube | 100                                     | 100                                | 23.4      | 22.3      | 21.4        | 20.3                          | 19.9 |
| Eaton Socon       | Suburban            | Diffusion Tube | 100                                     | 100                                | 29.3      | 27.9      | 24.5        | 23.5                          | 24.5 |
| Southoe           | Roadside            | Diffusion Tube | 100                                     | 100                                | 19.5      | 18.5      | 20.3        | 19.2                          | 17.4 |
| Buckden           | Roadside            | Diffusion Tube | 100                                     | 100                                | 21.4      | 20.0      | 19.5        | 19.5                          | 19.4 |
| Buckden 2         | Roadside            | Diffusion Tube | 100                                     | 100                                | 33.0      | 23.3      | 23.8        | 25.3                          | 25.6 |
| Brampton 1        | Roadside            | Diffusion Tube | 100                                     | 100                                | 27.4      | 26.9      | 29.4        | 25.6                          | 22.7 |
| Brampton 2        | Suburban            | Diffusion Tube | 92                                      | 92                                 | 16.8      | 16.3      | 18.4        | 16.9                          | 15.9 |
| Brampton 3        | Suburban            | Diffusion Tube | 100                                     | 100                                | 17.9      | 17.0      | 19.2        | 18.0                          | 15.7 |
| Brampton 4        | Suburban            | Diffusion Tube | 100                                     | 100                                | 16.2      | 14.3      | 17.1        | 14.1                          | 14.4 |
| Catworth          | Rural               | Diffusion Tube | 92                                      | 92                                 | 26.6      | 22.6      | 21.4        | 21.7                          | 21.6 |
| Alconbury         | Roadside            | Diffusion Tube | 100                                     | 100                                | 22.0      | 21.0      | 24.3        | 21.4                          | 19.9 |
| Sawtry            | Suburban            | Diffusion Tube | 100                                     | 100                                | 19.6      | 19.7      | 20.3        | 22.2                          | 20.9 |
| Stibbington       | Roadside            | Diffusion Tube | 83                                      | 83                                 | 32.3      | 27.8      | 26.2        | 21.7                          | 29.6 |
| Huntingdon 1      | Kerbside            | Diffusion Tube | 100                                     | 100                                | 26.1      | 24.4      | 23.0        | 22.7                          | 21.0 |
| Huntingdon 2      | Kerbside            | Diffusion Tube | 100                                     | 100                                | 48.8      | 44.5      | 42.9        | 41.1                          | 40.7 |
| Huntingdon 3      | Kerbside            | Diffusion Tube | 92                                      | 92                                 | 28.1      | 27.9      | 27.9        | 28.9                          | 29.9 |
| Huntingdon 4      | Roadside            | Diffusion Tube | 100                                     | 100                                | 32.8      | 29.1      | 29.9        | 27.0                          | 27.6 |

|                                |                     | Monitoring     | Valid Data                              | Valid Data                         | NO <sub>2</sub> Ar | nual Mean | Concentra | ation (µg/m | <sup>3</sup> ) <sup>(3)</sup> |
|--------------------------------|---------------------|----------------|-----------------------------------------|------------------------------------|--------------------|-----------|-----------|-------------|-------------------------------|
| Site ID                        | Site Type           | Туре           | Monitoring<br>Period (%) <sup>(1)</sup> | Capture 2015<br>(%) <sup>(2)</sup> | 2011               | 2012      | 2013      | 2014        | 2015                          |
| Huntingdon 5                   | Roadside            | Diffusion Tube | 100                                     | 100                                | 32.0               | 26.4      | 24.6      | 25.2        | 23.7                          |
| Huntingdon 6                   | Suburban            | Diffusion Tube | 100                                     | 100                                | 19.9               | 20.2      | 21.3      | 18.5        | 17.1                          |
| Godmanchester                  | Roadside            | Diffusion Tube | 100                                     | 100                                | 23.9               | 24.3      | 27.9      | 23.8        | 22.7                          |
| PFH1                           | Roadside            | Diffusion Tube | 100                                     | 100                                | 51.6               | 49.3      | 47.5      | 49.5        | 44.2                          |
| PFH2                           | Roadside            | Diffusion Tube | 100                                     | 100                                | 49.0               | 49.0      | 48.8      | 52.0        | 44.7                          |
| PFH3                           | Roadside            | Diffusion Tube | 100                                     | 100                                | 52.4               | 48.5      | 50.2      | 52.8        | 46.6                          |
| Fenstanton 1                   | Roadside            | Diffusion Tube | 75                                      | 75                                 | 37.0               | 35.5      | 29.5      | 32.8        | 31.5                          |
| Fenstanton 2                   | Roadside            | Diffusion Tube | 100                                     | 100                                | 28.6               | 24.5      | 22.0      | 22.5        | 19.9                          |
| St lves                        | Urban<br>Background | Diffusion Tube | 100                                     | 100                                | 20.0               | 18.9      | 17.8      | 18.7        | 17.6                          |
| Ramsey                         | Urban<br>Background | Diffusion Tube | 92                                      | 92                                 | 17.3               | 17.2      | 17.2      | 18.0        | 17.8                          |
| Buckden 3                      | Roadside            | Diffusion Tube | 100                                     | 100                                | 40.8               | 31.3      | 32.2      | 32.2        | 28.9                          |
| Buckden 4                      | Roadside            | Diffusion Tube | 92                                      | 92                                 | 26.6               | 23.7      | 27.6      | 26.8        | 21.2                          |
| Hilton *                       | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 14.6 <sup>(3)</sup>           |
| Fenstanton 3 *                 | Rural               | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 14.4 <sup>(3)</sup>           |
| St lves 2 *                    | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 22.4 <sup>(3)</sup>           |
| Wood Green<br>Animal Shelter * | Rural               | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 13.1 <sup>(3)</sup>           |
| Huntingdon 7 *                 | Kerbside            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 38.3 <sup>(3)</sup>           |
| Alconbury 2 *                  | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 18.6 <sup>(3)</sup>           |
| Brampton 5 *                   | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 19.8 <sup>(3)</sup>           |
| Brampton 6 *                   | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 17.9 <sup>(3)</sup>           |
| Brampton 7 *                   | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 17.7 <sup>(3)</sup>           |
| Offord Cluny *                 | Suburban            | Diffusion Tube | 42                                      | 42                                 |                    |           |           |             | 21.3 <sup>(3)</sup>           |

Notes: Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**. NO<sub>2</sub> annual means exceeding  $60\mu g/m^3$ , indicating a potential exceedance of the NO<sub>2</sub> 1-hour mean objective are shown in **bold and underlined**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

#### Table A.4 – 1-Hour Mean NO<sub>2</sub> Monitoring Results

|         |           | Monitoring | Valid Data<br>Capture for               | Valid Data                         |      | NO <sub>2</sub> 1-Hou | r Means > 2 | 200µg/m <sup>3 (3)</sup> |      |
|---------|-----------|------------|-----------------------------------------|------------------------------------|------|-----------------------|-------------|--------------------------|------|
| Site ID | Site Type | Туре       | Monitoring Period<br>(%) <sup>(1)</sup> | Capture 2015<br>(%) <sup>(2)</sup> | 2011 | 2012                  | 2013        | 2014                     | 2015 |
| PFH     | Roadside  | Automatic  | 92                                      | 92                                 | 0    | 3                     | 0           | 0                        | 0    |

Notes: Exceedances of the NO<sub>2</sub> 1-hour mean objective  $(200\mu g/m^3 \text{ not to be exceeded more than 18 times/year)}$  are shown in **bold**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 85%, the 99.8<sup>th</sup> percentile of 1-hour means is provided in brackets.

#### Table A.5 – Annual Mean PM<sub>10</sub> Monitoring Results

| Site ID |           | Valid Data Capture        | Valid Data         | <b>PM</b> <sub>10</sub> | PM <sub>10</sub> Annual Mean Concentration (μg/m <sup>3</sup> ) <sup>(3)</sup> |      |       |       |  |  |  |  |
|---------|-----------|---------------------------|--------------------|-------------------------|--------------------------------------------------------------------------------|------|-------|-------|--|--|--|--|
| Site ID | Site Type | Period (%) <sup>(1)</sup> | (%) <sup>(2)</sup> | 2011                    | 2012                                                                           | 2013 | 2014  | 2015  |  |  |  |  |
| PFH     | Roadside  | 98                        | 98                 | 26.3                    | 31.2                                                                           | 30.0 | 20.49 | 19.34 |  |  |  |  |

Notes: Exceedances of the  $PM_{10}$  annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

#### Table A.6 – 24-Hour Mean PM<sub>10</sub> Monitoring Results

| Site ID | Site Type | Valid Data Capture for<br>Monitoring Period (%) | Valid Data<br>Capture 2015 (%) |      | PM <sub>10</sub> 24-Hc | our Means > | • 50µg/m <sup>3 (3)</sup> |      |
|---------|-----------|-------------------------------------------------|--------------------------------|------|------------------------|-------------|---------------------------|------|
|         | Site Type |                                                 |                                | 2011 | 2012                   | 2013        | 2014                      | 2015 |
| PFH     | Roadside  | 98                                              | 98                             | 0    | 41                     | 26          | 6                         | 3    |

Notes: Exceedances of the PM<sub>10</sub> 24-hour mean objective (50µg/m<sup>3</sup> not to be exceeded more than 35 times/year) are shown in **bold**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 85%, the 90.4<sup>th</sup> percentile of 24-hour means is provided in brackets.

#### Table A.7 – PM<sub>2.5</sub> Monitoring Results

| Site ID S |           | Valid Data Capture        | Valid Data         | PM <sub>2.5</sub> | Annual Me | an Concen | tration (µg/ | ′m³) <sup>(3)</sup> |
|-----------|-----------|---------------------------|--------------------|-------------------|-----------|-----------|--------------|---------------------|
|           | Site Type | Period (%) <sup>(1)</sup> | (%) <sup>(2)</sup> | 2011              | 2012      | 2013      | 2014         | 2015                |
| PFH       | Roadside  | 96.3                      | 96.3               |                   |           |           | 13.9         | 12.3                |

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

# **Appendix B: Full Monthly Diffusion Tube Results for 2015**

## Table B.1 – NO2 Monthly Diffusion Tube Results - 2015

|              |      |      |      |      |      | NO <sub>2</sub> M | ean C | oncent | rations | (µg/m | <sup>3</sup> ) |      |             |                         |
|--------------|------|------|------|------|------|-------------------|-------|--------|---------|-------|----------------|------|-------------|-------------------------|
| Site ID      |      |      |      |      |      |                   |       |        |         |       |                |      | Annua       | l Mean                  |
| Sile iD      | Jan  | Feb  | Mar  | Apr  | Мау  | Jun               | Jul   | Aug    | Sep     | Oct   | Nov            | Dec  | Raw<br>Data | Bias<br>Adjusted<br>(1) |
| St Neots 5   | 37.8 | 27.9 | 22.3 | 23.4 | 20.3 | 18.7              | 17.0  | 20.8   | 29.4    | 30.2  | 32.7           | 23.7 | 25.4        | 20.5                    |
| St Neots 3   | 44.9 | 49.9 | 37.2 | 42.2 | 34.2 | 30.2              | 34.0  | 37.4   | 36.7    | 41.4  | 40.3           | 41.1 | 39.1        | 31.7                    |
| St Neots 1   | 31.3 | 30.4 | 25.2 | 20.2 | 8.8  | 11.3              | 13.4  | 14.9   | 19.5    | 25.4  | 24.1           | 22.0 | 20.5        | 16.6                    |
| St Neots 2   | 27.5 | 26.2 | 19.9 | 17.6 | 10.7 | 10.1              | 8.2   | 14.3   | 14.7    | 19.3  | 22.2           | 21.4 | 16.1        | 14.3                    |
| St Neots 4   | 58.8 | 45.1 | 36.9 | 35.0 | 29.4 | 24.3              | 28.1  | 26.4   | 35.1    | 40.5  | 36.1           | 30.0 | 35.5        | 28.7                    |
| Eynesbury    | 30.4 | 35.7 | 28.8 | 27.5 | 20.4 | 14.9              | 16.4  | 17.0   | 18.1    | 24.4  | 29.6           | 31.7 | 24.6        | 19.9                    |
| Eaton Socon  | 42.6 | 34.2 | 32.1 | 32.9 | 27.9 | 22.5              | 24.3  | 20.2   | 26.9    | 32.5  | 36.7           | 30.6 | 30.3        | 24.5                    |
| Southoe      | 22.5 | 28.6 | 25.4 | 22.2 | 16.2 | 12.6              | 13.0  | 20.6   | 23.7    | 32.1  | 17.8           | 22.5 | 21.4        | 17.4                    |
| Buckden      | 26.2 | 35.5 | 25.0 | 25.6 | 18.0 | 15.3              | 18.5  | 19.5   | 23.1    | 25.8  | 30.2           | 25.2 | 24.0        | 19.4                    |
| Buckden 2    | 40.9 | 40.9 | 33.0 | 31.5 | 29.4 | 29.2              | 28.8  | 27.7   | 29.4    | 31.9  | 31.5           | 25.2 | 31.6        | 25.6                    |
| Brampton 1   | 37.1 | 32.7 | 29.4 | 28.5 | 20.4 | 19.9              | 17.2  | 23.5   | 34.4    | 42.4  | 30.9           | 19.3 | 28.0        | 22.7                    |
| Brampton 2   | 29.8 | 27.3 | 22.3 | 16.8 | 16.0 |                   | 12.6  | 13.9   | 18.3    | 20.8  | 22.0           | 16.1 | 19.6        | 15.9                    |
| Brampton 3   | 12.8 | 24.8 | 23.9 | 28.1 | 14.1 | 12.6              | 11.5  | 15.7   | 20.4    | 30.4  | 17.4           | 20.4 | 19.3        | 15.7                    |
| Brampton 4   | 31.3 | 20.4 | 18.0 | 19.3 | 12.4 | 9.2               | 11.7  | 15.3   | 14.9    | 18.9  | 21.4           | 20.4 | 17.8        | 14.4                    |
| Catworth     | 35.3 | 37.2 | 26.4 | 26.4 | 23.9 | 20.1              | 25.2  | 24.1   | 22.3    | 20.4  |                | 32.1 | 26.7        | 21.6                    |
| Alconbury    | 30.2 | 31.3 | 27.1 | 30.9 | 13.8 | 14.7              | 16.2  | 20.2   | 27.1    | 35.7  | 24.4           | 23.3 | 24.6        | 19.9                    |
| Sawtry       | 30.2 | 27.7 | 28.1 | 30.2 | 16.4 | 12.4              | 19.3  | 24.6   | 28.3    | 40.3  | 28.1           | 24.4 | 25.8        | 20.9                    |
| Stibbington  | 41.8 | 47.0 | 31.5 |      |      | 22.3              | 40.9  | 25.4   | 33.2    | 31.3  | 44.7           | 47.8 | 36.6        | 29.6                    |
| Huntingdon 1 | 30.4 | 34.8 | 26.5 | 21.6 | 25.2 | 19.5              | 19.9  | 20.8   | 23.9    | 28.8  | 30.0           | 30.2 | 26.0        | 21.0                    |
| Huntingdon 2 | 54.6 | 55.6 | 48.2 | 50.0 | 44.9 | 42.4              | 48.1  | 48.7   | 46.4    | 47.9  | 61.1           | 54.4 | 50.2        | 40.7                    |
| Huntingdon 3 | 43.9 | 47.4 | 35.7 | 29.8 | 28.8 |                   | 31.3  | 34.0   | 33.4    | 38.4  | 44.3           | 38.8 | 36.9        | 29.9                    |

|                             |      |      |      |      |      | NO <sub>2</sub> M | ean C | oncent | rations | (µg/m | <sup>3</sup> ) |      |             |                         |
|-----------------------------|------|------|------|------|------|-------------------|-------|--------|---------|-------|----------------|------|-------------|-------------------------|
| Site ID                     |      |      |      |      |      |                   |       |        |         |       |                |      | Annua       | l Mean                  |
| Site iD                     | Jan  | Feb  | Mar  | Apr  | Мау  | Jun               | Jul   | Aug    | Sep     | Oct   | Nov            | Dec  | Raw<br>Data | Bias<br>Adjusted<br>(1) |
| Huntingdon 4                | 41.1 | 41.6 | 34.8 | 32.5 | 32.1 | 29.4              | 26.9  | 31.0   | 30.2    | 32.1  | 45.8           | 31.9 | 34.1        | 27.6                    |
| Huntingdon 5                | 40.7 | 40.0 | 18.3 | 23.9 | 23.1 | 18.1              | 26.2  | 28.3   | 27.5    | 32.3  | 35.5           | 37.8 | 29.3        | 23.7                    |
| Huntingdon 6                | 27.3 | 26.4 | 25.4 | 28.1 | 16.4 | 13.6              | 11.5  | 18.0   | 17.6    | 32.3  | 19.5           | 16.8 | 21.1        | 17.1                    |
| Godmanchester               | 36.9 | 33.8 | 32.7 | 34.6 | 19.9 | 17.2              | 19.7  | 26.4   | 33.4    | 41.4  | 21.0           | 19.5 | 28.0        | 22.7                    |
| PFH1                        | 56.9 | 56.3 | 50.8 | 65.1 | 49.5 | 49.3              | 55.2  | 55.0   | 53.5    | 61.1  | 54.4           | 48.1 | 54.6        | 44.2                    |
| PFH2                        | 58.6 | 57.1 | 50.0 | 64.0 | 44.5 | 55.2              | 53.1  | 58.8   | 60.2    | 64.7  | 49.9           | 46.8 | 55.2        | 44.7                    |
| PFH3                        | 61.1 | 66.9 | 54.4 | 62.8 | 49.9 | 53.5              | 47.0  | 60.5   | 63.2    | 64.7  | 58.1           | 48.7 | 57.6        | 46.6                    |
| Fenstanton 1                |      |      | 42.8 | 36.9 | 42.8 | 29.6              | 40.1  | 39.9   | 35.7    | 36.9  |                | 45.6 | 38.9        | 31.5                    |
| Fenstanton 2                | 28.7 | 32.3 | 26.0 | 28.7 | 18.3 | 19.5              | 21.8  | 23.9   | 20.4    | 22.5  | 30.2           | 23.1 | 24.6        | 19.9                    |
| St lves                     | 30.0 | 32.3 | 23.3 | 19.9 | 16.4 | 12.2              | 13.9  | 17.4   | 16.2    | 23.1  | 28.8           | 27.1 | 21.7        | 17.6                    |
| Ramsey                      | 27.7 | 42.6 |      | 23.1 | 14.3 | 10.9              | 14.5  | 19.3   | 20.1    | 26.0  | 24.4           | 19.3 | 22.0        | 17.8                    |
| Buckden 3                   | 42.8 | 29.8 | 37.8 | 43.2 | 28.1 | 26.2              | 32.9  | 34.4   | 37.1    | 39.5  | 39.5           | 37.4 | 35.7        | 28.9                    |
| Buckden 4                   | 18.3 |      | 30.2 | 33.4 | 19.3 |                   | 27.1  | 30.2   | 30.4    | 40.9  | 25.4           | 30.6 | 26.2        | 21.2                    |
| Hilton *                    |      |      |      |      |      |                   |       | 13.2   | 19.7    | 18.9  | 18.0           | 16.0 | 18.1        | 14.6                    |
| Fenstanton 3 *              |      |      |      |      |      |                   |       | 12.6   | 17.8    | 19.1  | 19.7           | 15.3 | 17.8        | 14.4                    |
| St lves 2 *                 |      |      |      |      |      |                   |       | 21.2   | 23.1    | 30.2  | 33.8           | 23.5 | 27.7        | 22.4                    |
| Wood Green Animal Shelter * |      |      |      |      |      |                   |       | 11.1   | 13.8    | 17.6  | 14.5           | 19.7 | 16.1        | 13.1                    |
| Huntingdon 7 *              |      |      |      |      |      |                   |       | 39.7   | 39.9    | 46.0  | 52.1           | 47.2 | 47.3        | 38.3                    |
| Alconbury 2 *               |      |      |      |      |      |                   |       | 21.4   | 18.1    | 24.8  | 22.0           | 23.1 | 23.0        | 18.6                    |
| Brampton 5 *                |      |      |      |      |      |                   |       | 22.3   | 24.4    | 26.0  | 23.7           | 19.9 | 24.5        | 19.8                    |
| Brampton 6 *                |      |      |      |      |      |                   |       | 15.9   | 20.6    | 25.4  | 21.0           | 22.2 | 22.1        | 17.9                    |
| Brampton 7 *                |      |      |      |      |      |                   |       | 14.3   | 17.4    | 19.5  | 26.7           | 25.8 | 21.8        | 17.7                    |
| Offord Cluny *              |      |      |      |      |      |                   |       | 21.6   | 23.9    | 28.5  | 24.8           | 26.4 | 26.3        | 21.3                    |

(1) See Appendix C for details on bias adjustment (2) Locations marked with a \* are only temporary locations due to increased County Council funding.

# Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

Figure C.1 – Diffusion Tube Bias Adjustment

| National Diffusion Tube                                                                            | e Bias Adju                                                                                                                     | istment                | Fa                                                 | ctor Spreadsheet                                                    |                          |                                    | Spreadsh                           | eet Ver               | sion Numt    | ber: 03/16  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------|------------------------------------|------------------------------------|-----------------------|--------------|-------------|--|--|
| Follow the steps below in the correct ord                                                          | ler to show the res                                                                                                             | ults of <u>releva</u>  | nt co-                                             | location studies                                                    |                          |                                    |                                    | This                  | spreadshe    | et will be  |  |  |
| Data only apply to tubes exposed monthly a                                                         | nd are not suitable f                                                                                                           | for correcting i       | individ                                            | ual short-term monitoring periods                                   |                          |                                    |                                    | updat                 | ed at the er | nd of June  |  |  |
| Whenever presenting adjusted data, you sh                                                          | ould state the adjus                                                                                                            | tment factor u         | sed ar                                             | nd the version of the spreadsheet                                   |                          |                                    |                                    |                       | 2016         |             |  |  |
| This spreadhseet will be updated every few                                                         | months: the factor                                                                                                              | s may there fo         | re be s                                            | subject to change. This should not disc                             | ourage thei              | r immediate us                     | e.                                 |                       |              |             |  |  |
| The LAQM Helpdesk is operated on behalf of E<br>contract partners AECOM and the National Ph        | )efra and the Devolve<br>ysical Laboratory.                                                                                     | d Administratio        | ons by E                                           | Bureau Veritas, in conjunction with                                 | Spreadsh<br>compiled b   | eet maintained<br>by Air Quality C | by the National<br>onsultants Ltd. | Physica               | Laboratory   | /. Original |  |  |
| Step 1:                                                                                            |                                                                                                                                 |                        |                                                    |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
|                                                                                                    | <u>Delect a</u>                                                                                                                 | <u>Delect a</u>        | ₩he                                                | re there is only one study for a ch                                 | osen com                 | bination, you                      | should use t                       | ne adju:              | stment fac   | tor shown   |  |  |
| Select the Laboratory that Analyses Your                                                           | Preparation                                                                                                                     | Year from the          | with                                               | caution. Where there is more that                                   | n one stud               | lv. use the ov                     | erall factor <sup>a</sup> :        | shown i               | n blue at r  | he foot of  |  |  |
| Tubes from the Drop-Down List                                                                      | Method from the                                                                                                                 | Drop-Down              |                                                    |                                                                     | the fir                  | nal column.                        |                                    |                       |              |             |  |  |
|                                                                                                    | If a proparation mothed in                                                                                                      | If a year is not       | 1                                                  |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
| If a laboratory ir notzhown, we have no data for thir laboratory.                                  | ni trhaun, uo havo na data<br>inchis mothad at this                                                                             | shaun, ue have na      | 1 1                                                | you have your own co-location study the<br>Management Heledeck at l | n see tootho<br>AOMHalad | ote". If uncertain                 | h what to do ther                  | n contact<br>Ienn n32 | the Local A  | ir Quality  |  |  |
| International status data Management Helpdesk at LAQMHelpdesk@uk.bureauveritas.com or 0800 0327953 |                                                                                                                                 |                        |                                                    |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
| Analysed By' Method Year' Level niffuring Automatic Bias                                           |                                                                                                                                 |                        |                                                    |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
|                                                                                                    | Tabada gaar artratian, akanar<br>1800 Fran Breastan Gal                                                                         | Taxada gaar artratian, | Site                                               |                                                                     | of Study                 | Tube Mean                          | Monitor                            | Bias                  | Tube         | Adjustme    |  |  |
|                                                                                                    |                                                                                                                                 |                        | Тур                                                | Local Authority                                                     | fmonths                  | Conc. (Dm)                         | Mean                               | (B)                   | Precisio     | nt Factor   |  |  |
| e Cocal Authority (months Conc. (Dm) (B) (B) (Conc. (Cm)) (Cm) (Cm) (Cm) (Cm) (Cm) (Cm) (Cm        |                                                                                                                                 |                        |                                                    |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
| ~I                                                                                                 | T     T     T     )     (µg/m²)     (µg/m²)     (Um/D)       T     T     D     D     (µg/m²)     (µg/m²)     (µg/m²)     (Um/D) |                        |                                                    |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | R                                                  | Dumfries and Galloway Council                                       | 12                       | 35                                 | 30                                 | 14.6%                 | G            | 0.87        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | В                                                  | Gravesham Borough Council                                           | 12                       | 40                                 | 30                                 | 34.1%                 | Li<br>D      | 0.75        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | В                                                  | Gravesham Borough Council                                           | 12                       | 30                                 | 23                                 | 29.8%                 | P            | 0.77        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   |                                                    | North Lincolnshire                                                  | 11                       | 24                                 | 18                                 | 36.5%                 | P            | 0.73        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | В                                                  | Swale BC                                                            | 11                       | 38                                 | 32                                 | 19.3%                 |              | 0.84        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | R                                                  | Swale BC                                                            | 10                       | 48                                 | 39                                 | 21.0%                 |              | 0.83        |  |  |
| ESG Didoot                                                                                         | 50% TEA in adecone                                                                                                              | 2015                   |                                                    | Wale Borough Council                                                | 12                       | 40                                 | 34                                 | 0.6%                  | G            | 0.04        |  |  |
| ESG Didoot                                                                                         | 50% TEA in adetone                                                                                                              | 2015                   |                                                    | Cardiff Coupeil                                                     | 10                       | 26                                 | 26                                 | 16%                   | 6            | 0.33        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | KG                                                 | Marulahone Boad Intercomparison                                     | 12                       | 104                                | 81                                 | 27.9%                 | 6            | 0.30        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | Vale of White Horse District Council                                | 11                       | 34                                 | 29                                 | 15.7%                 | G            | 88.0        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | u                                                  | Stockton on Tees                                                    | 12                       | 24                                 | 18                                 | 29.4%                 | G            | 0.77        |  |  |
| ESG Dideot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | Stockton on Tees                                                    | 12                       | 17                                 | 14                                 | 21.5%                 | G            | 0.82        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | KS                                                 | Suffolk Coastal DC                                                  | 12                       | 44                                 | 35                                 | 26.0%                 | P            | 0.79        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | 15 SU Thanet District Council 9 17 15 10.6% G 0.90 |                                                                     |                          |                                    |                                    |                       |              |             |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | Thanet District Council                                             | 12                       | 27                                 | 23                                 | 17.8%                 | G            | 0.85        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | в                                                  | Medway Council                                                      | 12                       | 21                                 | 12                                 | 77.3%                 | G            | 0.56        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | Medway Council                                                      | 11                       | 32                                 | 23                                 | 42.6%                 | G            | 0.70        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | North East Lincolnshire Council                                     | 10                       | 34                                 | 28                                 | 21.2%                 | Р            | 0.83        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | B                                                  | North East Lincolnshire Council                                     | 11                       | 39                                 | 28                                 | 38.6%                 | G            | 0.72        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   | R                                                  | North East Lincolnshire Council                                     | 11                       | 55                                 | 47                                 | 16.2%                 | G            | 0.86        |  |  |
| ESG Didcot                                                                                         | 50% TEA in acetone                                                                                                              | 2015                   |                                                    | Overall Factor <sup>1</sup> (21 studies)                            |                          |                                    |                                    |                       | lse          | 0.81        |  |  |

## Figure C.2 – Third Party QA/QC reports

| lac mra                                                                                                                                             |             | CERTI<br>Ricardo-AEA,<br>Telephone 01     | RI<br>FICATI<br>Gemini Buildii<br>235 753692                                         | CAR<br>E OF CA       | ALIBRA                             | -AE           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------|--------------------------------------------------------------------------------------|----------------------|------------------------------------|---------------|-----------|
| 0<br>Approved Signatori                                                                                                                             | 401<br>es:  | D. H<br>S. E<br>A. M                      | lector<br>aton<br>ladle √                                                            |                      | B. Stace<br>N. Rand<br>S. Stratt   | ey<br>I<br>on |           |
| Signed:                                                                                                                                             |             | the                                       | -                                                                                    |                      |                                    |               |           |
| Date of Issue:                                                                                                                                      |             | 03-0-                                     | 1-15                                                                                 |                      |                                    |               |           |
| Certificate Number:                                                                                                                                 | 03153       |                                           |                                                                                      |                      |                                    | Page          | 1 of 2    |
| Customer Name an                                                                                                                                    | nd Address: | Hun<br>Path<br>St M<br>Hun<br>Carr<br>PE2 | tingdonshire D<br>Ifinder House<br>lary's Street<br>tingdon<br>Ibridgeshire<br>9 3TN | istrict Council      |                                    |               |           |
| Description:Calibration factors for Huntingdonshire Pathfinder House air monitoring<br>station.Ricardo-AEA Identification Number:20645084/June 2015 |             |                                           |                                                                                      |                      |                                    |               |           |
| Site / Date Test<br>Carried Out                                                                                                                     | Species     | Analyser<br>Serial No                     | Zero<br>Response <sup>1</sup>                                                        | Uncertainty<br>(ppb) | Calibration<br>Factor <sup>2</sup> | Uncertainty   | Converter |
| Pathfinder House                                                                                                                                    | NOx         | 606815007                                 | -1.6                                                                                 | 2.5                  | 1.070                              | 3.5           | 7.1*      |
| 2 June 2015                                                                                                                                         | NO          |                                           | -1.0                                                                                 | 2.6                  | 1.071                              | 3.5           |           |

\*Poor NO<sub>2</sub> converter result demonstrates a critical fault identified within the NO<sub>x</sub> instrument. Result out of specification and invalid.

| Site / Date Test<br>Carried Out | Species           | Analyser<br>Serial No. | Parameter               | Specified<br>Value | Measured<br>Value | Deviation<br>% | Uncertainty<br>(%) |
|---------------------------------|-------------------|------------------------|-------------------------|--------------------|-------------------|----------------|--------------------|
| Pathfinder House                | PM <sub>10</sub>  | CM9510077              | Total Flow <sup>4</sup> | 16.67              | 16.85             | +1.1           | 2.2                |
| 02 June 2015                    | PM <sub>2.5</sub> | CM9510083              | Total Flow <sup>4</sup> | 16.67              | 17.34             | +4.0           | 2.2                |

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2 providing a level of confidence of approximately 95% The uncertainty evaluation has been carried out in accordance with UKAS requirements.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

www.ricardo-aea.com

Ricardo-AEA Head Office: Gemini Building · Fermi Avenue · Harwell • Didcot · Oxfordshire, OX11 0QR, UK ·Tel: +44(0)1235 753000 Ricardo-AEA Registered Office: Shoreham · Technical Centre · Shoreham-by-Sea · West Sussex, BN43 5FG, UK Registered in England No: 08229264 · VAT Registration No. GB 144024745

Certificate Number: 03153 Ricardo-AEA Identification Number: 20645084/June 2015

Page 2 of 2

The gaseous ambient analysers listed above have been tested for zero response, calibration factor, linearity and converter efficiency (NO<sub>x</sub> analysers only) by documented methods. The factors have been calculated using certified gas standards. The particulate analysers listed above have been tested for sample flow rates and k<sub>0</sub> (where appropriate) by documented methods. Note that the test results are valid on the day of test only, as analyser drift over time cannot be quantified. All results for gaseous species are given in ppb (parts per billion) mole fractions or ppm (parts per million) mole fractions.

<sup>1</sup>The zero response is the zero reading on the data logging system of the analyser when audit zero gas was introduced to the analysers under test.

<sup>2</sup>The calibration factor is the multiplying factor required to scale the reading on the data logging system of the analyser into reported concentration units (ppb for NO, NO<sub>x</sub>, SO<sub>2</sub>, O<sub>3</sub> and ppm for CO. Where 1 ppm = 1000 ppb). It should be used in conjunction with the zero response. A corrected concentration is calculated using the following equation:

#### Concentration = F (Output - Zero Response)

Where F = Calibration Factor provided on this certificate Output = Reading on the data logging system of the analyser Zero Response = Zero Response provided on this certificate

<sup>3</sup>Converter eff. is the measured efficiency of the NO<sub>2</sub> to NO converter within the oxides of nitrogen analyser under test.

<sup>4</sup>The measured total flow rate is the total flow rate through the particulate analyser under test. Units of flow are I.min<sup>-1</sup>. Where flow rates are highlighted in bold, it indicates that measurements were not made at the analyser sample inlet. These measurements therefore may not accurately reflect analyser performance in normal operation.

The calibration results shaded are those that fall within our scope of accreditation, all other results on this certificate are not UKAS accredited, but have been included for completeness.

#### Dave Bass Huntingdonshire District Council Pathfinder House St Mary's Street Huntingdon Cambridgeshire PE29 3TN

Andrew Madle Ricardo-AEA Limited

Gemini Building Fermi Avenue Hanvell Oxfordshire OX11 0QR, UK

Tel: +44 (0)1235 753692

- E: andrew.madle@ricardo.com
- W: http://www.airqualityengland.co.uk/
- W: www.ricardo-aea.com

03 July 2015 Reference: 20645084/R18

#### AIR MONITORING CALIBRATION CLUB

Ambient air monitoring station: Pathfinder House Date of Audit: 02<sup>nd</sup> June 2015

Dear Dave,

This report documents the results of quality control audits to Huntingdonshire District Council's Pathfinder House ambient air monitoring station. The work programme is supplied under Ricardo-AEA ED20645084 contract for the supply of audit services.

The Pathfinder House monitoring station was audited on the 02<sup>rd</sup> June 2015. The equipment audits utilise procedures that are applied within the Department for Environment, Food and Rural Affairs (Defra) national automatic air monitoring network quality control programme.

#### AUDIT RESULTS

The following sections provide details of the audit results on a pollutant basis with recommendations for data management action where appropriate.

#### Oxides of Nitrogen Analysers

A major factor governing the analyser's performance is the NO<sub>x</sub> analyser's converter and its ability to reduce the nitrogen dioxide to nitric oxide. The recommended range for instrumentation in the national automatic air monitoring network is in the range of 98% 102% efficient. Our tests show the converter in this analyser to be 7.1% efficient at an NO<sub>2</sub> concentration of 264 ppb. This is an unusual result, a poor failure and this highlights a critical fault within the instrument system. Following the audit it was advised you contact your equipment support unit to request they rectify this issue immediately.

To ensure that the analysers are sampling only ambient air the instrument was leak checked. The results were satisfactory, indicating that the analyser sampling systems were free of significant leaks. The analysers exhibited good steady state responses to both zero and span (calibration) gases with acceptable levels of variation (noise).

The NOx analyser flow rate was measured using a calibrated flow meter, the measured flow rate was compared against the analyser displayed value to evaluate its accuracy. The devised audit pass criteria is that the measured flow and analyser displayed value agree within  $\pm 10\%$ , the instrument passed this test.

www.ricardo-aea.com

Ricardo-AEA Head Office: Gemini Building • Fermi Avenue • Harwell • Diduct • Oxfordshire: CX11 0QF, UK • Tel: +44(0)1235 753000 Ricardo-AEA Registered Office: Shorthern • Technical Cente • Shorthern-by-Sea • West Sussex, BN43 SFG, UK Registered in England No: 08229264 • WIT Registration No. 58 144024745

Based on the NO<sub>x</sub> analyser's response to the audit standard and audit zero, the concentrations of the stations NO cylinder has been reassessed. This provides an indication of the site standards stability. For the purpose of these stability checks, the criteria adopted within the national network, and used here, is that the recalculated concentration should lie within 10% of the stated concentrations. The results of the recalculations are presented below:

| Pathfinder House - NO cylinder 115131D |                       |                      |          |                      |  |  |  |  |  |
|----------------------------------------|-----------------------|----------------------|----------|----------------------|--|--|--|--|--|
|                                        | NO <sub>x</sub> (ppb) | % change from stated | NO (ppb) | % change from stated |  |  |  |  |  |
| Manufacturers Stated Concentration     | 469                   |                      | 469      |                      |  |  |  |  |  |
| Recalc. Concentration (03/06/2014)     | 440                   | -6.2                 | 432      | -7.8                 |  |  |  |  |  |
| Recalc. Concentration (03/12/2014)     | 427                   | -9.0                 | 424      | -9.6                 |  |  |  |  |  |
| Recalc. Concentration (02/06/2015)     | 414                   | -11.8                | 413      | -12.0                |  |  |  |  |  |

These results indicate that the NO cylinder concentrations for the Pathfinder House monitoring station were outside the audit pass criteria of  $\pm 10\%$  at -11.8% NO<sub>x</sub> and -12% NO. Results outside the  $\pm 10\%$  criteria either flag a data management action and/or replacement required of the site cylinder. When viewing the previous audit results in the table above it is evident the concentrations although outside the pass criteria have only drifted between the December 2014 and June 2015 audits by 3% for NO<sub>x</sub> and 2.4% for NO.

We advise the outlying site cylinder concentrations can be accounted for within the data ratification process and the cylinder remains on site for another QC audit. The site cylinder audit recalculation results should be used in a linear manner to recalculate a corrected site cylinder concentration at each of the previous site calibration dates, calibration correction factors should be recalculated from the adjusted cylinder concentrations and data scaled accordingly. Consider the NO<sub>x</sub> converter was identified as outlying at a critical level thus demonstrating a general poor performing instrument, this may have had an effect on the site cylinder recalculation results and another reason why we would recommend the cylinder stays on site for a future QC audit.

#### Other Recommendations

The onsite calibration system was checked against our audit system (a direct connection to the instrument sample inlet with an excess flow meter inline). It was noted the site calibration system deviated the audit calibration system by >10%, this may have been due to a general poor performing instrument. It is recommended this is evaluated at a future audit to ensure there are no issues with the onsite system.

#### Thermo 5014i PM10 & PM25 analysers

To ensure that a true PM<sub>10</sub> measurement is made, the total flow through the sample inlet must be 16.7 litres per minute. Volumetric flow tests were carried out on the instrument. The measured flows showed good agreement with the system flow set points. To ensure that the analyser was sampling only ambient air, the instrument flow rates were also checked again with a flow restricting test adaptor. The aim here is to identify a leak in the system by comparing these restricted flow readings against the previously recorded unrestricted flow readings. No large discrepancy was found and the instrument was deemed as being free of major leaks.

The instruments temperature and pressure sensor displayed readings were checked against calibrated audit meters. The criteria for instrumentation in national automatic air monitoring network for temperature is that the measured temperature must within 3C of the instruments indicated temperature, for pressure the measured pressure must lie within 3mbar of the instruments indicated pressure. It was identified that the PM10 and PM2.5 temperature sensor were deviating the audit thermometer reading by >3C. It is recommended you inform your equipment support unit to calibrate these sensors at the next service.

#### Certificate of Calibration

Calibration factors and zeros have been produced on the basis of the audit calibrations conducted. All of these calibrations were conducted with transfer standards traceable to national metrology standards. The attached Certificate of Calibration provides the calibration and zero response factors for the oxides of nitrogen analysers under test on the day of the audits as well as the measured flows for the particulate analysers.

www.ricardo-aea.com

#### DATA MANAGEMENT

The following recommendations and comments can be made as a result of these audits:

- Compare the Huntingdonshire District Council database scaling factors for the day of the audits with the factors and zeros on the Certificate of Calibration. If a deviation greater than the uncertainty of each factor on the Certificate of Calibration exists, the underlying reason should be investigated and suitable data management actions implemented.
- Consider the impact of the outlying NO<sub>x</sub> converter efficiency on the data. The data sets should be reviewed for a signs of discontinuity and data rejected where appropriate. It was advised you contacted you equipment support unit to arrange an immediate repair of the instrument, ensure this has been undertaken.
- Consider the impact of the outlying site NO cylinder recalculated concentrations on the site calibrations.
   Consider these results may have been questionable due to the general poor performance of the instrument.
- Review the equipment support unit records and ensure a NO<sub>x</sub> converter test has been undertaken following the instrument being repaired, check this lies within the recommended range of 98-102%. If this hasn't been undertaken or the result lies outside this range it is recommended the station has an additional QC audit to evaluate the converter efficiency and ensure the instrument is recording reliable data. Consider the risk of data rejection if the fault hasn't been rectified.

If you have any questions relating to our audit results or wish to discuss any aspect of air pollution monitoring, please don't hesitate to contact me on 01235 753692 or at <u>andrew.madle@ricardo.com</u>

Yours sincerely

Andrew Madle

R D

Air Quality and Environment www.ricardo-aea.com www.airgualityengland.co.uk/





## CERTIFICATE OF CALIBRATION

Ricardo Energy & Environment, Gemini Building, Fermi Avenue, Harwell, Didcot, Oxfordshire OX11 0QR. Telephone 01235 753692

Approved Signatories:

D. Hector S. Eaton

A. Madle

| В. | Stacey |  |
|----|--------|--|
|    |        |  |

S. Stratton

N. Rand 🗸

Signed: N. Runk

Date of Issue: 14th December 2015

Certificate Number: 03228

Customer Name and Address:

Huntingdonshire District Council Pathfinder House St Mary's Street Huntingdon Cambridgeshire PE29 3TN

Description:

Calibration factors for Huntingdonshire Pathfinder House air monitoring station.

Ricardo Energy & Environment ID:

Gaseous Analysers

| Site / Date Test Carried<br>Out | Species | Analyser<br>Serial No. | Zero<br>Response <sup>1</sup> | Uncertainty<br>ppb | Calibration<br>Factor <sup>2</sup> | Uncertainty<br>% | Converter<br>eff. (%) <sup>3</sup> |
|---------------------------------|---------|------------------------|-------------------------------|--------------------|------------------------------------|------------------|------------------------------------|
| Pathfinder House                | NOx     | 4000000000             | -0.8                          | 2.7                | 1.330                              | 3.5              | 09.5                               |
| 07th December 2015              | NO      | 420000000              | -0.7                          | 2.7                | 1.332                              | 3.5              | 90.0                               |

20645084/December 2015

Particulate Analysers

| Site / Date Test<br>Carried Out | Species           | Analyser<br>Serial No. | Parameter               | Specified<br>Value | Measured<br>Value | Deviation<br>% | Uncertainty<br>% |
|---------------------------------|-------------------|------------------------|-------------------------|--------------------|-------------------|----------------|------------------|
| Pathfinder House                | PM <sub>10</sub>  | CM9510077              | Total Flow <sup>4</sup> | 16.67              | 16.30             | -2.2           | 2.2              |
| 07th December 2015              | PM <sub>2.5</sub> | CM9510083              | Total Flow <sup>4</sup> | 16.67              | 15.94             | -4.4           | 2.2              |

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2 providing a level of confidence of approximately 95% The uncertainty evaluation has been carried out in accordance with UKAS requirements. This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

| Ricardo Energy & Environment, a | Registered office         |
|---------------------------------|---------------------------|
| trading name of Ricardo-AEA Ltd | Shoreham Technical Centre |
| Head Office                     | Shoreham-by-Sea           |
| Gemini Building,                | West Sussex               |
| Fermi Avenue,                   | BN43 5FG                  |
| Harwell.                        |                           |
| Oxon                            | Registered in England No. |
| OX11 DQR                        | 08229264                  |
| Tel: +44 (0)1235 753 000        | VAT Registration No.      |
|                                 | GB 144024745              |
|                                 |                           |

ee.ricardo.com

Certificate Number: 03228

Ricardo Energy & Environment ID:

20645084/December 2015



The gaseous ambient analysers listed have been tested for zero response, calibration factor, linearity and converter efficiency (NOx analysers) by documented methods. The factors have been calculated using certified gas standards. The particulate analysers listed above have been tested for sample flow rates and k0 (where appropriate) by documented methods. Note that the test results are valid on the day of test only, as analyser drift over time cannot be quantified. All results for gaseous species are given in ppb (parts per billion) mole fractions or ppm (parts per million) mole fractions.

<sup>1</sup> The zero response is the zero reading on the data logging system of the analyser when audit zero gas was introduced to the analysers under test.

<sup>a</sup> The calibration factor is the multiplying factor required to scale the reading on the data logging system of the analyser into reported concentration units (ppb for NO, NOx, SO2, O3 and ppm for CO. Where 1 ppm = 1000 ppb). It should be used in conjunction with the zero response. A corrected concentration is calculated using the following equation:

Concentration = F (Output - Zero Response)

Where F = Calibration Factor provided on this certificate

Output = Reading on the data logging system of the analyser Zero Response = Zero Response provided on this certificate

<sup>3</sup> Converter eff. is the measured efficiency of the NO<sub>2</sub> to NO converter within the oxides of nitrogen analyser under test.

\* The measured total flow rate is the total flow rate through the particulate analyser under test. Units of flow are I.min<sup>-1</sup>. Where flow rates are highlighted in bold, it indicates that measurements were not made at the analyser sample inlet. These measurements therefore may not accurately reflect analyser performance in normal operation

The calibration results shaded are those that fall within our scope of accreditation, all other results on this certificate are not UKAS accredited, but have been included for completeness.



Richard Hollingsworth Huntingdonshire District Council Pathfinder House St Mary's Street Huntingdon Cambridgeshire PE29 3TN

14th December 2015 Reference 20645084/R19 Darren Lane Ricardo Energy & Environment Gemini Building Fermi Avenue Harwell Oxfordshire OX11 0QR, UK

Tel: +44 (0)1235 753 601 E: darren.lane@ricardo.com W:www.airgualityengland.co.uk/ W: ee.ricardo.com

#### AIR MONITORING QA/QC AUDIT RESULTS

Ambient air monitoring stations: Huntingdon Pathfinder House

Date of Audits: 07th December 2015

Dear Richard,

This report documents the results of quality control audit to Huntingdonshire District Council's Pathfinder House ambient air monitoring station. The work programme is supplied under contract Ricardo Energy & Environment/20645084 for the supply of audit services.

The Huntingdon Pathfinder House monitoring station was audited on 07<sup>th</sup> December 2015. The equipment audits utilise procedures that are applied within the Department for Environment, Food and Rural Affairs (Defra) national automatic air monitoring network quality control programme.

#### AUDIT RESULTS

The following sections provide details of the audit results on a pollutant basis with recommendations for data management action where appropriate.

#### **Oxides of Nitrogen Analysers**

A major factor governing the analyser's performance is the NOx analyser's converter and its ability to reduce the nitrogen dioxide to nitric oxide. The recommended range for instrumentation in the national automatic air monitoring network is in the range of 98% - 102% efficient. Our tests show the converter in this analyser to be 98.5% efficient with NO2 concentrations of 262 ppb. This is a good result.

To ensure that the analysers are sampling only ambient air the instruments were leak checked. The results were satisfactory, indicating that the analyser sampling systems were free of significant leaks. The analysers exhibited good steady state responses to both zero and span (calibration) gases with acceptable levels of variation (noise).

The NO<sub>x</sub> analyser sample flow rate was measured using a calibrated flow meter and compared against the analyser's flow rate sensor displayed value to evaluate its accuracy. The analyser's flow rate sensor reading was within 10% of the calibrated flow meter reading and therefore passed this test.

| Registered office                    |
|--------------------------------------|
| Shoreham Technical Centre            |
| Shoreham-by-Sea                      |
| West Sussex                          |
| BN43 5FG                             |
|                                      |
| Registered in England No.            |
| 08229264                             |
| VAT Registration No.<br>GB 144024745 |
|                                      |

ee.ricardo.com



Based on the NO<sub>x</sub> analyser's response to the audit standard and audit zero, the concentrations of the stations NO cylinders have been reassessed. This provides an indication of the on-site standards stability (the gas concentration stabilities). For the purpose of these stability checks, the criteria adopted within the national network, and used here, is that the recalculated concentration should lie within 10% of the suppliers stated concentrations. The results of the recalculations are presented below:

| Pathfinder House - NO cylinder 115131D                                        |     |       |     |       |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----|-------|-----|-------|--|--|--|--|--|--|--|
| NO <sub>x</sub> (ppb) % change<br>from stated NO (ppb) % change fro<br>stated |     |       |     |       |  |  |  |  |  |  |  |
| Manufacturers Stated Concentration                                            | 469 |       | 469 |       |  |  |  |  |  |  |  |
| Recalculated Concentration (03/06/14)                                         | 440 | -6.2  | 432 | -7.8  |  |  |  |  |  |  |  |
| Recalculated Concentration (03/12/14)                                         | 427 | -9.0  | 424 | -9.6  |  |  |  |  |  |  |  |
| Recalculated Concentration (02/06/15)                                         | 414 | -11.8 | 413 | -12.0 |  |  |  |  |  |  |  |
| Recalculated Concentration (07/12/15)                                         | 413 | -11.8 | 412 | -12.1 |  |  |  |  |  |  |  |

These results indicate that the NO cylinder concentrations for the Pathfinder House monitoring station were outside the audit pass criteria of  $\pm 10\%$  at -11.8% NO<sub>x</sub> and -12.1% NO. Results outside the  $\pm 10\%$  criteria either flag a data management action and/or replacement required of the site cylinder. When viewing the previous audit results in the table above it is evident the concentrations although outside the pass criteria have not drifted between the June 2015 and December 2015 audits for NO<sub>x</sub> and NO.

We advise the outlying site cylinder concentrations can be accounted for within the data ratification process and the cylinder remains on site for another QC audit.

#### Thermo 5015i PM10 & PM2.6 analysers

To ensure that a true PM<sub>10</sub> measurement is made, the total flow through the sample inlet must be 16.7 litres per minute. Volumetric flow tests were carried out on the instrument. The measured flows showed good agreement with the system flow set points. To ensure that the analyser was sampling only ambient air, the instrument flow rates were also checked again with a flow restricting test adaptor. The aim here is to identify a leak in the system by comparing these restricted flow readings against the previously recorded unrestricted flow readings. No large discrepancy was found and the instrument was deemed as being free of major leaks.

#### Certificate of Calibration

Calibration factors and zeros have been produced on the basis of the audit calibrations conducted. All of these calibrations were conducted with transfer standards traceable to national metrology standards. The attached Certificate of Calibration provides the calibration and zero response factors for the oxides of nitrogen analysers under test on the day of the audits as well as the measured flows and calculated calibration constant for the particulate analysers.



#### DATA MANAGEMENT

The following recommendations and comments can be made as a result of these audits:

- Compare the Huntingdonshire District Council database scaling factors for the day of the audits with the factors
  and zeros on the Certificate of Calibration. If a deviation greater than the uncertainty of the respective factors
  on the Certificate exists, investigate the underlying reason and implement suitable data management actions.
- Consider the impact of the outlying site NO cylinder recalculated concentrations on the site calibrations. Calibration correction factors should be recalculated using the audit recalculated cylinder concentrations and data then scaled accordingly

If you have any questions relating to our audit results or wish to discuss any aspect of air pollution monitoring, please don't hesitate to contact me on 01235 753601 or 07425 623526 <u>darren.lane@ricardo.com</u>

Yours sincerely

AS

Darren Lane

Air Quality - Ricardo Energy and Environment www.airgualityengland.co.uk/ ee.ricardo.com



Figure C.3 – NO<sub>2</sub> monitoring station service reports

|                                                                                                      | alibra                                                            | NO<br>ation                                                                                | x An<br>I/Line | alyse<br>earity                      | er<br>/ Rep                                       | port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                                                                                        | AIR                                                                                                             | VIONI                  | TOP               |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|--------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| 420                                                                                                  |                                                                   |                                                                                            | ]              |                                      | Serie                                             | ol Ha:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 426608503                                                     |                                                                                        |                                                                                                                 | Repu                   | rt Ha.            |
|                                                                                                      | Pr                                                                | e-Se                                                                                       | ervi           | ce/                                  | Rep                                               | air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calib                                                         | rati                                                                                   | on                                                                                                              |                        |                   |
|                                                                                                      |                                                                   |                                                                                            |                |                                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>s</u>                                                      | pan S                                                                                  | ource                                                                                                           | Deta                   | ils               |
| Barult                                                                                               | н                                                                 | 0                                                                                          | H              | 02                                   | H                                                 | DZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                                                                                        |                                                                                                                 |                        |                   |
| 6er                                                                                                  | PPB                                                               | -7                                                                                         | PPB            | -7                                   | PPB                                               | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                                                                                        | HO                                                                                                              |                        | H                 |
| External Zern                                                                                        | -0.2                                                              |                                                                                            | -2.3           |                                      | -2.5                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                             | yl. Ha:                                                                                | 115131D                                                                                                         |                        |                   |
| Injection of                                                                                         | 271                                                               |                                                                                            | 1              |                                      | 272                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C .                                                           | rl. PSI:                                                                               | 1800                                                                                                            |                        |                   |
| Injection of                                                                                         |                                                                   |                                                                                            |                |                                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 🛴                                                           | Cart                                                                                   | 46.9                                                                                                            |                        |                   |
|                                                                                                      | 10                                                                | 30 2                                                                                       |                | 106/                                 | Rep                                               | air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exten                                                         | nalZe                                                                                  | <u></u><br>10 Sou                                                                                               | rce [                  | Deta              |
| Recult                                                                                               | H                                                                 | 0                                                                                          | H              | 02                                   | H                                                 | DZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                                                                                        |                                                                                                                 |                        |                   |
| Ger                                                                                                  | PPB                                                               | -7                                                                                         | PPB            | -7                                   | PPB                                               | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                                                                                        | On Site                                                                                                         | ZAG:                   |                   |
| External Zern                                                                                        | 0                                                                 |                                                                                            | 0              |                                      | 0                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                             |                                                                                        | Cylinda                                                                                                         | HE C                   |                   |
| Injection of                                                                                         | 469                                                               |                                                                                            | •              | t                                    | <del> </del>                                      | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                             |                                                                                        | 1                                                                                                               |                        |                   |
|                                                                                                      |                                                                   |                                                                                            |                | 1                                    | 470                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                                                                        | Secold                                                                                                          |                        |                   |
| lajectina of<br>NO2                                                                                  |                                                                   |                                                                                            |                | G                                    | 470<br>PT (                                       | Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><u>::k</u>                                                |                                                                                        | Scrubb                                                                                                          | er:                    |                   |
| Njoctina af<br>NO2<br>NO                                                                             | Display                                                           | r (PPB                                                                                     | Injecto        | <u>G</u>                             | 470<br>PT C                                       | Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>> <u>k</u><br>D                                           |                                                                                        | Scrubb                                                                                                          | er:                    | 0                 |
| NO2<br>NO2<br>NO<br>NO<br>NO                                                                         | Dirplay                                                           | r (PPB                                                                                     | lajecte        | <u>G</u>                             | 470<br>PT C                                       | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>)</u><br><u>&gt;k</u>                                      |                                                                                        | ANO<br>MO                                                                                                       | er:                    | 0                 |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>2                      | Dirplay                                                           | r (PPB                                                                                     | njø et d       | <u>G</u>                             | 470<br>PT C                                       | hec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>эк</u><br>Э<br>м                                           | uly Effa                                                                               | ANO<br>NO2                                                                                                      | •r:                    | 0<br>0<br>\$DIV/0 |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>Segnerated<br>Segne Point                                  | Display                                                           | <u>ро</u><br>Тур-                                                                          | st S           | <u>G</u><br>-4 (H0)<br>Serv<br>(=*)  | 470<br>PT C<br>Inject                             | Theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo<br>theo | )<br>)<br>)<br>hearity<br>Photo-met                           | uly Effe<br>7 – Che<br>ter (epk)                                                       | ANO<br>NO2<br>ciency                                                                                            | <u>•r:</u>             | 0<br>0<br>\$DIW/0 |
| NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>Seas Paint<br>200                                   | Dirplay<br>Gar 1                                                  | <u>Ро</u><br>Ро                                                                            | st S           | <u>G</u><br>-4 (H0)<br>Serv<br>(=?)  | 470<br>PT C<br>Inject<br>0;<br>ice<br>Dir;<br>(r) | hec<br>•4 (03<br>•pb<br>Lir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )<br>)<br>hearity<br>Photo-mod                                | uly Effe-<br>7 Che<br>ter (eeb)                                                        | Ano<br>Noz<br>ciency                                                                                            | • <b>•••••••••••••</b> | 0<br>0<br>*DIV/0  |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>Space Paint<br>200<br>160                                  | Display<br>Gar 1<br>N                                             | <u>Ро</u><br>Ро<br>17р+                                                                    | st S           | <u>G</u><br>-4 (H0)<br>Serv<br>(=?)  | 470<br>PT C<br>Inject<br>0;<br>ice                | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )<br>)<br>hearity<br>Photo-mod                                | uly Effe-<br>7 Che<br>ter (ppb)                                                        | Ano<br>Moz<br>ciency                                                                                            | •••••                  | 0<br>0<br>*DIV/0  |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>N                      | Dirplay<br>Gar 1<br>N<br>N                                        | PO<br>Type<br>10                                                                           | st S           | <u>G</u><br>•4 (H0)<br>Serv<br>•(=?) | 470<br>PT C<br>0;<br>ice<br>Dir;<br>Cr            | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )<br><u>k</u><br><u>h</u><br><u>h</u><br><u>h</u><br><u>h</u> | uly Effe-<br>7 Che<br>ter (ppb)                                                        | Ano<br>Noz<br>ciency                                                                                            | • <b>•••••••••••••</b> | 0<br>0<br>*DIW/0  |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>N                      | Ger 1<br>N<br>N<br>N                                              | PO<br>F7P+                                                                                 | st S           | G<br>                                | 470<br>PT C<br>ice                                | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) h h h h h h h h h h h h h h h h h h h                       | uly Effe-<br>7 Che<br>ter (ppb)                                                        | MO<br>MO<br>MO<br>Ciency                                                                                        | • <b>F</b>             | 0<br>0<br>*DIV/0  |
| NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>N                      | Ger 1<br>N<br>N<br>N<br>N                                         | PO<br>Type<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                     | st S           | <u>G</u><br>•4 (H0)<br>Serv<br>(=?)  | 470<br>PT C<br>0;<br>ice                          | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )<br><u>k</u><br><u>hearity</u><br>Photo-met                  | uly Effe-<br>7 Che<br>ter (eeb)                                                        | MO<br>MO<br>Ciency                                                                                              | • <b>F</b>             | 0<br>0<br>*DIW/0  |
| 10<br>102<br>102<br>10<br>102<br>10<br>102<br>10<br>102<br>100<br>160<br>160<br>120<br>80<br>40<br>0 | Ger 1<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | PO<br><b>PO</b><br><b>Type</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | st S           | G<br>-4 (H0)<br>Serv<br>(=?)         | 470<br>PT C                                       | hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre> &gt; k  &gt; h h h h h h h h h h h h h h h h</pre>      | aly Effe<br>7 Che<br>ter (apk)                                                         | Ano<br>Moz<br>ciency                                                                                            |                        | 0<br>0<br>*DIW    |
| NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2<br>NO2                                   | Ger<br>N<br>N<br>N<br>N<br>ZER                                    | PO<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                             | st S           | <u>G</u><br>-4 (H0)<br>Serv<br>(=?)  | 470<br>PT C<br>Inject                             | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre> bit bit bit bit bit bit bit bit bit bit</pre>           | nly Effe<br>7 Che<br>ter (eek)<br>Deta                                                 | Ino<br>Noz<br>ciency                                                                                            | • <b>F</b>             | 0<br>0<br>*DIW/0  |
| NO N                                                             | Ger 1<br>N<br>N<br>N<br>N<br>ZER                                  | PO<br>Type<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                     | st s           | <u>G</u><br>+4 (H0)<br>Serv<br>(=?)  | 470<br>PT C<br>Inject                             | <pre> .hec .incincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincincinc</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ender :<br>Bland<br>High C                                    | nly Effe-<br>7 Che<br>ter (ppb)<br>Deta<br>er Hudel<br>h Cunc.<br>unc. Cyl<br>unc. Cyl | Ano<br>Noz<br>ciency<br>ciency<br>ciency<br>ils<br>ck<br>ils<br>ils<br>cylh-<br>cylh-<br>cylh-<br>lPSI<br>ICanc | • FT:                  | 0<br>0<br>*DIW/0  |



|       | Ca                                                                                                                             | alibra  | NO        | x An<br>/Line | alyse<br>earity | er<br>/ Rep | oort              |                     | 4          |               | ITORE             | 8 cm           |
|-------|--------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------------|-----------------|-------------|-------------------|---------------------|------------|---------------|-------------------|----------------|
| idel: | 420                                                                                                                            |         |           | ]             |                 | Serie       | d Ha:             | 426608503           |            | Rep           | urt Ha. [         | fo0510201      |
|       | Pre-Service/ Repair Calibration                                                                                                |         |           |               |                 |             |                   |                     |            |               |                   |                |
|       |                                                                                                                                |         |           |               |                 |             |                   | Spar                | n So       | urce Deta     | ails              |                |
|       | Beruit                                                                                                                         | н       | 0         | MO            | )Z              | MO          | Σ                 | 4                   |            |               |                   |                |
|       | 6er -                                                                                                                          | PPB     | - 7       | PPB           | - 7             | PPB         | 7                 | ]                   | _          | NO            | NO                | 2              |
|       | External Zern                                                                                                                  | -0.8    |           | 0.7           |                 | -0.1        |                   | Cyl. H              | las   1    | 115131D       |                   |                |
|       | Injection of                                                                                                                   | 365     |           | 2             |                 | 367         |                   | Cyl. P              | sı: I      | 1200          |                   |                |
|       | Injection of                                                                                                                   |         |           |               |                 |             |                   | e-1.e-              |            | 445           |                   |                |
|       |                                                                                                                                | Po      | st S      | Serv          | ice/            | /Rep        | air               | Calibra<br>External | tio<br>Zen | n<br>o Source | Detail            | s              |
|       | Barult                                                                                                                         | H       | 0         | HO            | )2              | HO          | DZ .              |                     | _          |               |                   |                |
|       | 6er                                                                                                                            | PPB     | - 12      | PPB           | - 12            | PPB         | - 7               |                     |            | On Site ZAG:  |                   | •              |
|       | External Zern                                                                                                                  | 0.6     |           | 1.1           |                 | 1.7         |                   | ]                   |            | Cylinder:     |                   |                |
|       | Injection of                                                                                                                   | 412     |           | 2             |                 | 414         |                   | 1                   |            | Scrabbar      |                   |                |
|       | Injection of                                                                                                                   |         |           |               |                 |             |                   | 1                   |            |               |                   |                |
| 1     | NO                                                                                                                             | Dicplay | (PPB)     | Injecte       | <u>G</u>        | PT C        | hec               | <u>k</u>            |            | 4110          |                   |                |
|       | NOZ                                                                                                                            |         |           |               |                 | 0 p         | pb -              |                     |            | MOZ           | 0                 |                |
|       | NO                                                                                                                             |         |           |               |                 |             |                   | 1                   |            |               |                   |                |
|       | NO2                                                                                                                            |         |           |               |                 | 1           |                   | Hely B              | ffeci      | iency .       | *DIW/0!           |                |
|       | Requested<br>See Paint<br>200                                                                                                  | Ger 1   | <u>Po</u> | st S          | erv<br>(=*)     | ice<br>Dire | Lin<br>day<br>(b) | Photo-motor (       | hec        | <u>ck</u>     |                   |                |
|       | 160                                                                                                                            | N       | 0         |               |                 |             |                   |                     | -+         |               |                   |                |
|       | 120                                                                                                                            | N       | 0         |               |                 |             |                   |                     | -+         |               |                   |                |
|       | \$0                                                                                                                            | N       | 0         |               |                 |             |                   |                     | $\neg$     |               |                   |                |
|       | 40                                                                                                                             | N       | 0         |               |                 |             |                   |                     |            |               |                   |                |
|       | 0                                                                                                                              | ZER     | DAIR      |               |                 |             |                   |                     |            |               |                   |                |
|       | Blender Details<br>Blender Mudel/SN <sup>+</sup><br>High Cunc. Cyl H <sup>+</sup><br>High Cunc. Cyl PSI<br>High Cunc. Cyl Cunc |         |           |               |                 |             |                   |                     |            |               |                   |                |
|       |                                                                                                                                |         |           |               |                 |             |                   |                     | Engin<br>D | ete:-         | Freddy  <br>05710 | Elmer<br>/2015 |

# Appendix D: Map(s) of Monitoring Locations

Figure D.1 – Non automatic NO<sub>2</sub> monitoring locations





Figure D.2 Automatic NO2, PM10 & PM2.5 monitoring location

# Appendix E: Summary of Air Quality Objectives in England

## Table E.1 – Air Quality Objectives in England

| Pollutont                             | Air Quality Objective <sup>4</sup>                                   |                |
|---------------------------------------|----------------------------------------------------------------------|----------------|
| Fonutant                              | Concentration                                                        | Measured as    |
| Nitrogen Dioxide                      | 200 µg/m <sup>3</sup> not to be exceeded more than 18 times a year   | 1-hour mean    |
| $(100_2)$                             | 40 μg/m <sup>3</sup>                                                 | Annual mean    |
| Particulate Matter                    | 50 μg/m <sup>3</sup> , not to be exceeded more than 35 times a year  | 24-hour mean   |
| (FIVI10)                              | 40 μg/m <sup>3</sup>                                                 | Annual mean    |
|                                       | 350 μg/m <sup>3</sup> , not to be exceeded more than 24 times a year | 1-hour mean    |
| Sulphur Dioxide<br>(SO <sub>2</sub> ) | 125 μg/m <sup>3</sup> , not to be exceeded more than 3 times a year  | 24-hour mean   |
|                                       | 266 µg/m <sup>3</sup> , not to be exceeded more than 35 times a year | 15-minute mean |

<sup>&</sup>lt;sup>4</sup> The units are in microgrammes of pollutant per cubic metre of air ( $\mu$ g/m<sup>3</sup>).

# **Glossary of Terms**

| Abbreviation      | Description                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AQAP              | Air Quality Action Plan - A detailed description of measures,<br>outcomes, achievement dates and implementation methods,<br>showing how the local authority intends to achieve air quality limit<br>values' |
| AQMA              | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives       |
| ASR               | Air quality Annual Status Report                                                                                                                                                                            |
| Defra             | Department for Environment, Food and Rural Affairs                                                                                                                                                          |
| DMRB              | Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England                                                                                                               |
| EU                | European Union                                                                                                                                                                                              |
| FDMS              | Filter Dynamics Measurement System                                                                                                                                                                          |
| LAQM              | Local Air Quality Management                                                                                                                                                                                |
| NO <sub>2</sub>   | Nitrogen Dioxide                                                                                                                                                                                            |
| NO <sub>x</sub>   | Nitrogen Oxides                                                                                                                                                                                             |
| PM <sub>10</sub>  | Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less                                                                                                           |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of 2.5 $\mu$ m or less                                                                                                                             |
| QA/QC             | Quality Assurance and Quality Control                                                                                                                                                                       |
| SO <sub>2</sub>   | Sulphur Dioxide                                                                                                                                                                                             |