Private Sector House Condition Survey 2010

FINAL REPORT
May 2011

Huntingdonshire District Council

Working in partnership with
Contents

Executive Summary.. 5
 Introduction ...5
 General survey characteristics ..5
 Decent Homes Standard...6
 Cost implications for repair and improvement ..7
 Category 1 Hazards..7
 Energy Efficiency...8
 What of the future? ..8
 Key finding from the house condition survey..9

1 Introduction... 10
 1.1 Purpose of the survey ..10
 1.2 Nature of the survey ..10
 1.3 Central Government Guidance on house condition surveys11
 1.4 Comparative statistics ..11
 1.5 Statistical Variance and Standard Deviation ..11
 1.6 Sub-area analysis ...12
 1.7 Presentation of figures ..14

2 Profile of the private sector housing stock.. 15
 2.1 Size of the dwelling stock ..15
 2.2 Age of the dwelling stock ..15
 2.3 Dwelling type profile ..16
 2.4 Tenure...16
 2.5 Tenure and age comparisons ..17
 2.6 Dwelling Use and Houses in Multiple Occupation18
 2.7 Vacant dwellings ...19

3 Profile of Residents .. 20
 3.1 Introduction ..20
 3.2 Age Profile ..20
 3.3 Ethnic origin, nationality and other social characteristics21
 3.4 Household types ...22
 3.5 Length of residence ...23
 3.6 Income ..23
 3.7 Income and age of head of household ..25
 3.8 Income and household type ...26
 3.9 Income and residents with disabilities ...26
 3.10 Benefit receipt ..27
 3.11 Value of dwellings and equity ...27
 3.12 Residents with disabilities ..28
 3.13 Adaptations/Equipment ...29
 3.14 Owner occupiers plans to repair their property31
 3.15 Security ...32
3.16 Smoke and Carbon Monoxide detectors 32
3.17 Overcrowding .. 33

4 The Decent Homes Standard .. 35
4.1 Introduction .. 35
4.2 Change of emphasis and the Housing Act 2004 36
4.3 The meaning of non-decency ... 36
4.4 Overall level of non-decency .. 37
4.5 Numbers of failures per dwelling 38
4.6 Non-decency by general characteristics 38
4.7 Cost to Remedy ... 42
4.8 Age of Head of Household and non-decency 43
4.9 Household income and non-decency 43
4.10 Private sector vulnerable occupier base-line 44

5 Meeting the Decent Homes Standard – The Statutory Minimum Standard for Housing (Category 1 Hazards) 47
5.1 Requirement to remedy poor housing 47
5.2 Definition of Hazards under the HHSRS and Category level 47
5.3 Overall dwelling conditions ... 48
5.4 Reasons for Category 1 Hazards 49
5.5 Severity of Category 1 Hazards .. 50
5.6 Category 1 Hazards by general characteristics 50
5.7 Category 1 Hazards by social characteristics 52
5.8 Cost of works to dwellings with a Category 1 Hazards 53
5.9 Category 2 Hazards in bands D and E 53

6 Meeting the Decent Homes Standard – Reasonable State of Repair ... 57
6.1 Introduction .. 57
6.2 Disrepair and general characteristics 58
6.3 Disrepair by sub-area .. 59
6.4 Disrepair by social characteristics 59

7 Meeting the Decent Homes Standard – Modern Facilities 61
7.1 Introduction .. 61
7.2 Key amenities bathrooms and kitchens 61

8 Meeting the Decent Homes Standard – Thermal Comfort 63
8.1 Thermal comfort failures ... 63
8.2 Thermal comfort failures by general characteristics 63
8.3 Thermal comfort failure by sub-area 64

9 Energy Performance .. 66
9.1 Energy performance and SAP ratings 66
9.2 Distribution of SAP ratings ... 66
9.3 SAP by general characteristics 67
9.4 Carbon Dioxide emissions ... 70
9.5 SAP and National Indicator 187 73
9.6 Energy efficiency improvement 74
9.7 The cost and extent of improvement 76
9.8 Future improvement .. 76
9.9 Tackling fuel poverty ... 77
9.10 Area focus on fuel poverty ... 79
9.11 Energy efficiency works to all other dwellings 80

10 Conclusions and Policy Implications 82
10.1 Introduction .. 82
10.2 Stock Profile ... 82
10.3 Profile of Residents .. 83
10.4 The Decent Homes Standard .. 83
10.5 Housing Health and Safety Rating System 84
10.6 Repair Costs ... 84
10.7 Modern Facilities ... 85
10.8 Thermal Comfort and Energy Efficiency 85

Appendix A Index of tables and figures 86
Appendix B Methodology ... 88
Appendix C Survey Sampling ... 90
 Sample Design .. 90
 Stock total ... 90
 Weighting the data .. 90
 The survey response rate ... 91
 Dealing with non-response ... 91
 Sampling error .. 92
 Very small samples and zero results 94

Appendix D Legislative Requirements 95
Appendix E Definition of a Non-decent Home 97
 Measure of a decent home .. 97
 Applying the standard ... 97

Appendix F Glossary of terms ... 101
Appendix G Additional amenities .. 106
Executive Summary

Introduction

Private Sector House Condition Surveys (HCS) are conducted on a regular basis by local authorities as a means of maintaining a detailed picture of housing conditions in the private sector (owner occupied and privately rented homes). Such a picture forms a useful evidence base on which to build strategies and inform investment decisions, and feed into statistical returns and other internal reports. The information is also useful in presenting the potential obligations on an authority in relation to current housing legislation:

- Section 3 Housing Act 2004
- Regulatory Reform (Housing Assistance) (England and Wales) Order 2002 (RRO)

The survey was a sample survey with a target of 1,000 dwellings, covering all private sector tenures excluding registered social landlord (RSL) or housing association dwellings. A sample of 2,000 was drawn with final total of 1,021 full surveys being undertaken.

In order to place the findings in context, comparisons to the position for all England were drawn from the English Housing Survey 2008 (EHS) and the Survey of English Housing 2007-2008 (SEH), both published by Communities and Local Government (CLG) and available as a download document from their website.

General survey characteristics

The following list gives some of the key features of Huntingdonshire’s housing stock and population compared with national averages:

- A substantially lower proportion of the stock was built before 1945 than that found nationally (13.2% compared with 41.6%), with a similar proportion built between 1945 and 1964 but with a much higher proportion built post 1964 to that found nationally (69.9% compared with 41.5%).
- The tenure profile showed some differences to the national pattern. The owner occupied stock had higher proportions than that found nationally (75% compared with 68%), with privately rented dwellings also being represented at a lower rate (11% compared with 14%) and the social rented sector being lower (14% compared with 18%).
- The stock had higher proportions of detached houses and, to a lesser extent, bungalows, with lower proportions of all other dwelling types.
• There were fewer heads of household aged between 16 and 44 years than nationally (29.8% compared with 38.9%), with similar proportions for those aged between 45 and 54. There were, however, substantially more aged 55 and over than nationally (51.1% compared with 42.0%), particularly in the 65 and over age group (31.9% compared with 24.6%) which does have implications for private sector housing policy due to the potentially greater need for support typically associated with older households.

• The figures for length of residence, for those that had been resident for up to 5 years, showed a lower profile to that found nationally (28.0% compared with 35.4%).

• Overall average incomes were well below those reported for England as a whole at £523 per week compared with £710.

• The proportion of households with an income of less than £15,000 was 21.2% compared to 23.0% nationally with potential for some affordability issues for repair and improvements in the private sector dwelling stock.

• Receipt of a range of benefits is used to define vulnerability. These are mainly income related with the exception of some disability benefits, and are closely associated with the qualifying criteria used under the Warm Front scheme (see 4.10.2). In Huntingdonshire the proportion of households receiving a benefit, at 19%, was just above the national average of 17%, which links in to the proportion of those on a low income (less than £15,000) previously mentioned.

Decent Homes Standard

It is Government policy that everyone should have the opportunity of living in a “decent home”. The Decent Homes Standard contains four broad criteria that a property should:

A - be above the legal minimum standard for housing, and

B - be in a reasonable state of repair, and

C - have reasonably modern facilities (such as kitchens and bathrooms) and services, and

D - provide a reasonable degree of thermal comfort (effective insulation and efficient heating).

All of these criteria are described in more detail in their own individual chapters in the main report.

Overall, 12,860 private sector dwellings failed the Decent Homes Standard in Huntingdonshire. A total of 13.8% (7,910 dwellings) failed due to the presence of a category 1 hazard and 10.8% (6,210 dwellings) due to thermal comfort failure.
Cost implications for repair and improvement

The cost to make dwellings decent in the private sector provides an idea of the cost of bringing dwellings up to a good standard. The costs are the total sum that would be needed for remedial and improvement work, regardless of the source of funding. They take no account of longer term maintenance, which would be in addition to these costs.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Total Cost (£ million)</th>
<th>Average Cost per dwelling (£)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 Hazard</td>
<td>£25.3</td>
<td>£3,200</td>
</tr>
<tr>
<td>Repair</td>
<td>£17.7</td>
<td>£7,800</td>
</tr>
<tr>
<td>Amenities</td>
<td>£3.5</td>
<td>£16,620</td>
</tr>
<tr>
<td>Thermal comfort</td>
<td>£9.1</td>
<td>£1,460</td>
</tr>
<tr>
<td>Total</td>
<td>£55.6</td>
<td>£4,330</td>
</tr>
</tbody>
</table>

* Rounded to nearest £10

Category 1 Hazards

One of the most significant changes under the Housing Act 2004 was a change in the minimum standard for housing. The fitness standard was removed and replaced by the Housing Health and Safety Rating System (HHSRS). The Housing Health and Safety Rating System (HHSRS) is a prescribed method of assessing individual hazards, rather than a general standard to give a judgment of fit or unfit. The HHSRS is evidence based – national statistics on the health impacts of hazards encountered in the home are used as a basis for assessing individual hazards.

The HHSRS system deals with a much broader range of issues than the previous fitness standard. It covers a total of 29 hazards in four main groups described in more detail in the main report:

- Primary hazard failures in Huntingdonshire District are excess cold, falling on stairs and falling on level surfaces.
- Category 1 Hazards are strongly associated with older dwellings and, with dwellings occupied by heads of household aged under 25.
- Category 1 Hazards are strongly associated with low rise purpose built flats(less than 6 storeys), medium/large terraced houses and the private rented sector.
Energy Efficiency

Energy efficiency is a key consideration in private sector housing and the following illustrates some of the issues:

- Fuel poverty at 7.5% was much lower than the rate found in England at 15.4%. The cost of remedial works to the 1,250 owner occupied dwellings in fuel poverty (i.e. needing to spend more than 10% of income on Space heating; Water heating; Lights and appliances and Cooking) where works were required was just under £2.4 million.

- The mean SAP (SAP 2005 energy rating on a scale of 1 (poor) to 100 (good) was 54 in Huntingdonshire, which was higher than that found nationally in private sector dwellings (50).

- The least energy efficient dwellings were older dwellings (pre-1919); and converted flats (although these only represent 1.2% of the total private sector housing stock) and privately rented dwellings.

- Improving energy efficiency will contribute towards a range of Huntingdonshire District’s corporate priorities and indeed contribute to a wide range of issues e.g. reduced carbon emissions, tackling fuel poverty, elimination of Category 1 Hazards, improved health and well being – warmer, better homes.

- The level of excess cold hazards is an issue given the numbers of older residents in Huntingdonshire District and the potential link with cold related illnesses.

What of the future?

The replacement of Best Value Performance Indicators with Public Service Agreements (PSAs), introduced flexible target setting from the list of 198 PSAs. The most relevant to the condition of private sector housing were:

- PSA17 Tackle poverty and promote greater independence and well-being in later life;
- NI 155 and PSA20 Increase long term housing supply and affordability;
- NI 186 Per Capita CO2 emissions
- NI 187 Fuel Poverty

The comprehensive spending review by the government, published in October 2010 presents new challenges, the impact of which are still yet to be fully considered. Many performance targets set by the previous Labour Government have been removed by the Coalition Government, giving local authorities greater responsibility for setting their own targets, although there will be a single comprehensive data list developed, with publication due in the early part of 2011 for implementation in April 2011.

The national housing agenda has changing priorities, and moved away from dwelling condition toward:
• provision of sufficient affordable housing for all
• the health, safety and well being of occupiers
• reduction in carbon emissions through improved energy efficiency

The table below shows a summary of key findings from the Condition Survey:

Key finding from the house condition survey

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Owner occupied</th>
<th>Privately rented</th>
<th>All private sector stock</th>
<th>England</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwellings</td>
<td>49,850</td>
<td>7,560</td>
<td>57,410</td>
<td>82.0%</td>
</tr>
<tr>
<td>Per cent of stock¹</td>
<td>75%</td>
<td>11%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>Non-decent</td>
<td>10,130</td>
<td>2,730</td>
<td>12,860</td>
<td>34.4%</td>
</tr>
<tr>
<td>As a % of each tenure</td>
<td>20.3%</td>
<td>36.0%</td>
<td>22.4%</td>
<td></td>
</tr>
<tr>
<td>Vulnerable in decent homes²</td>
<td>8,200</td>
<td>620</td>
<td>8,820</td>
<td></td>
</tr>
<tr>
<td>% vulnerable households in decent homes</td>
<td>82.2%</td>
<td>64.4%</td>
<td>80.6%</td>
<td>65.6%</td>
</tr>
<tr>
<td>Category 1 hazard</td>
<td>5,970</td>
<td>1,940</td>
<td>7,910</td>
<td></td>
</tr>
<tr>
<td>As a % of each tenure</td>
<td>12.0%</td>
<td>25.7%</td>
<td>13.8%</td>
<td>23.6%</td>
</tr>
<tr>
<td>In Fuel Poverty⁴</td>
<td>3,630</td>
<td>600</td>
<td>4,230</td>
<td></td>
</tr>
<tr>
<td>As a % of each tenure</td>
<td>7.4%</td>
<td>8.2%</td>
<td>7.5%</td>
<td>15.4%</td>
</tr>
<tr>
<td>Mean SAP³</td>
<td>55</td>
<td>49</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>Residents aged 60+</td>
<td>17,340</td>
<td>730</td>
<td>18,070</td>
<td></td>
</tr>
<tr>
<td>As a % of each tenure</td>
<td>35.3%</td>
<td>9.8%</td>
<td>31.9%</td>
<td>24.6%</td>
</tr>
<tr>
<td>Households in receipt of benefit</td>
<td>9,980</td>
<td>960</td>
<td>10,940</td>
<td></td>
</tr>
<tr>
<td>As a % of each tenure</td>
<td>20.0%</td>
<td>13.0%</td>
<td>19.0%</td>
<td>17.0%</td>
</tr>
</tbody>
</table>

1. Percentages given as a proportion of total housing stock, the remaining 14% is all social housing, which was not surveyed as part of this study
2. Refers to households in receipt of an income or disability benefit, as defined under former Public Service Agreement 7 objectives
3. SAP is the government’s Standard Assessment Procedure for rating energy efficiency on a scale of 1 (poor) to 100 (excellent)
4. As a percentage of occupied dwellings, not all dwellings
1 Introduction

1.1 Purpose of the survey

1.1.1 Private Sector House Condition Surveys (HCS) are conducted on a regular basis by local authorities as a means of maintaining a detailed picture of housing conditions in the private sector. Such a picture forms a useful evidence base that can feed into statistical returns and other internal reports. The information is also useful in presenting the potential obligations on the authority in relation to current housing legislation, outlined in more detail in Appendix D.

1.1.2 In 2010 Huntingdonshire District Council commissioned a comprehensive House Condition Survey to address this legal requirement, and also to inform the Private Sector Housing Strategy and other housing policies. The survey work in Huntingdonshire District was conducted in the latter part of 2010.

1.1.3 In addition to the mandatory duties outlined in Appendix D there are a number of non-mandatory powers available to the Authority under the Housing Act 2004. These include: taking the most satisfactory course of action in relation to Category 2 Hazards under the Housing Health and Safety Rating System (HHSRS), with hazard categories being defined in chapter 5 of this report; additional licensing of Houses in Multiple Occupation (HMOs) that do not fall under the definition for mandatory licensing and serving of overcrowding notices. Part 3 of the Housing Act 2004, provides for selective licensing of other private rented sector accommodation subject to certain conditions being met.

1.1.4 This report will provide much of the evidence base, recommended under the ODPM guidance 05/2003, for the Authority's private sector housing strategy. In addition, information in the report is likely to prove useful as a source for a wide variety of private sector housing issues.

1.2 Nature of the survey

1.2.1 The survey required a sample of a minimum 1,000 dwellings covering the owner occupied and privately rented tenures only (Registered Social Landlords (RSL) dwellings were excluded). The survey was based on a stratified random sample of addresses in Huntingdonshire District, in order to gain a representative picture across the Council. A sample of 2,000 was drawn with, in practice, 1,021 surveys being undertaken in total.

1.2.2 The sample was drawn using the Building Research Establishment (BRE) stock modelling data, with dwellings being allocated into five bands (strata), based on the projection of vulnerably occupied non-
decent dwellings. This form of stratification concentrates the surveys in areas with the poorest housing conditions and allows more detailed analysis. This procedure does not introduce any bias to the survey as results are weighted proportionally to take account of the over-sampling.

1.2.3 The models were based on information drawn from the Office of National Statistics Census data, the Land Registry, the English House Condition Survey and other sources. It is this data that was used to predict dwelling condition and identify the ‘hot-spots’ to be over-sampled.

1.2.4 Each of the 1,021 surveys conducted contained information on the following areas: General characteristics of the dwelling; condition of the internal and external fabric; provision of amenities; compliance with housing health and safety; age and type of elements; energy efficiency measures; compliance with the Decent Homes Standard and socio-economic information about the household (where occupied).

1.3 **Central Government Guidance on house condition surveys**

1.3.1 The 1993 Department of the Environment Local House Condition Survey Guidance Manual sets out a methodology that includes a detailed survey form in a modular format, and a step-by-step guide to survey implementation.

1.3.2 The 1993 guidance was updated in 2000 and under the new guidance local authorities are encouraged to make full use of the data gathered from house condition surveys in conjunction with data from other sources. Also included is guidance on the Housing Health and Safety Rating System. The 2010 Huntingdonshire District Council HCS followed the ODPM 2000 guidance.

1.3.3 CPC’s own bespoke data was used to analyse the results of the survey and to produce the outputs required from the data to write this report.

1.4 **Comparative statistics**

1.4.1 Comparisons to the position for all England are drawn from the English Housing Survey 2008 (EHS) and the Survey of English Housing 2007-2008 (SEH), both published by Communities and Local Government (CLG) and available as a download document from their website. Comparisons with the last survey conducted in 2005 were limited to the tenure profile as that report included RSL dwellings, which this did not. In addition, there have been changes in the definitions used both for the Decent Homes Standard and for SAP ratings.

1.5 **Statistical Variance and Standard Deviation**

1.5.1 By definition, sample surveys are seeking to give an accurate representation of a larger number of dwellings than those surveyed.
The total to be represented is referred to in statistical terms as the ‘population’, and in the case of this survey the population was all private sector dwellings in Huntingdonshire District. Because any figure from a survey is based on a sample, it will be subject to some degree of variation. This statistical variance can be expressed in terms of ‘confidence limits’ and ‘standard deviation’.

1.5.2 Standard deviation is the amount by which a given figure may be inaccurate either above or below its stated level. Confidence limits state that if the entire survey process were repeated, out of how many of these repetitions would there be confidence in staying within the variation. Traditionally, and in the case of this report, 95% confidence limits have been used, which state that if the survey were carried out 100 times, in 95 cases the standard deviation would be a given amount.

1.5.3 It should be borne in mind, therefore, that the figures in this report are estimates, and it is for this reason that figures are rounded, as described below. More detail on the calculation of standard deviation is given in the appendices.

1.6 **Sub-area analysis**

1.6.1 The sampling was based on a very detailed regime to give a representative picture of the stock as a whole. Although the sample was drawn at the neighbourhood level, these areas are far too small to allow for meaningful reporting due to the level of statistical variance that occurs when looking at extremely small samples. As a consequence the survey findings were grouped into five geographic areas (a number of sub-areas which still allows effective analysis of the results given the overall sample size).
Figure 1.1 Sub areas
1.6.2 Table 1.1 shows the private sector stock totals by sub-area:

<table>
<thead>
<tr>
<th>Areas</th>
<th>Dwellings</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>14,170</td>
<td>24.7%</td>
</tr>
<tr>
<td>North East</td>
<td>8,700</td>
<td>15.2%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>17,510</td>
<td>30.5%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>15,820</td>
<td>27.6%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>1,210</td>
<td>2.1%</td>
</tr>
<tr>
<td>Total</td>
<td>57,410</td>
<td>100%</td>
</tr>
</tbody>
</table>

1.7 Presentation of figures

1.7.1 Due to the nature of statistical variation, as outlined above, it is not necessary to quote each individual figure to the nearest dwelling, as this implies a spurious level of accuracy. As with the English Housing Survey (EHS), figures in this report are either quoted to the nearest 100 dwellings or 10 dwellings, dependent upon the size of any given figure. Percentages within the report are only quoted to 1 decimal place for the same reason.
2 Profile of the private sector housing stock

2.1 Size of the dwelling stock

2.1.1 At the time of the survey there were an estimated 57,410 private sector dwellings in Huntingdonshire District. The 57,410 total for the stock was the estimated private sector stock total, provided by Huntingdonshire District Council and based on Council Tax Records. Individual weights were created for each dwelling surveyed, in accordance with the stratified sampling regime, such that each survey would represent a specific number of dwellings within Huntingdonshire District. Details of the sample stratification and weighting method are given in the Appendices.

2.2 Age of the dwelling stock

2.2.1 The age profile of the 57,410 owner occupied and privately rented stock in Huntingdonshire District was significantly different to the national average. The proportion of dwellings built pre-1945 was substantially lower at 13.2% compared with 41.6% nationally, with the 1945 to 1964 age band having the same proportions. The proportion of the stock built between 1965 and 1990 was substantially higher at 60.0% compared with 29.0%, with the difference being particularly marked in the 1965 to 1980 stock at 42.2% compared with 20.1%, over double. The post-1990 stock was represented at a slightly lower rate at 9.9% compared with 12.5%.

Figure 2.1 Dwelling age profile England and Huntingdonshire District

Source: 2010 House Condition Survey & EHS 2008
2.3 **Dwelling type profile**

Figure 2.2 Dwelling type profile Huntingdonshire District and England

![Graph showing dwelling type profile](image)

Source: 2010 House Condition Survey & EHS 2008

2.3.1 There were differences in the private sector building type profile in Huntingdonshire compared with the national pattern, with higher proportions of detached houses (38.7% compared with 21.0%) and bungalows (13.6% compared with 9.2%) but lower proportions of all other dwelling types. No high rise purpose built flats (6 or more storeys) were included as part of the sample survey. The proportion of detached houses showed a substantial difference to that found nationally, but was consistent with the results of the 2004 HCS survey for Huntingdonshire (41%, which included RSL properties) and the findings of the Cambridge Sub-Region’s Strategic Housing Market Assessment 2009 update (40%). When excluding RSL properties from the evaluation of the 2004 survey results it is even more consistent with the results of the 2010 survey (38.6%).

2.4 **Tenure**

2.4.1 Table 2.1 draws tenure comparisons between the stock profile for Huntingdonshire District and that for England as a whole.
Table 2.1 Tenure proportions

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Dwellings</th>
<th>Percent</th>
<th>EHS 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupied</td>
<td>49,850</td>
<td>75%</td>
<td>68%</td>
</tr>
<tr>
<td>Privately Rented</td>
<td>7,560</td>
<td>11%</td>
<td>14%</td>
</tr>
<tr>
<td>Private Sector Stock</td>
<td>57,410</td>
<td>86%</td>
<td>82%</td>
</tr>
<tr>
<td>Housing Association (RSL)</td>
<td>9,190</td>
<td>14%</td>
<td>9%</td>
</tr>
<tr>
<td>Local Authority & Other Public</td>
<td>0</td>
<td>0%</td>
<td>9%</td>
</tr>
<tr>
<td>Social Housing</td>
<td>9,190</td>
<td>14%</td>
<td>18%</td>
</tr>
<tr>
<td>All Tenures</td>
<td>66,600</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

2.4.2 The survey included for owner occupied and privately rented stock only, but the breakdown given in Table 2.1 includes social housing tenure for the sake of comparative purposes with the EHS.

2.4.3 The tenure profile again differed from the national profile with the owner occupied stock at a higher level (75% compared with 68%). The privately rented sector was represented at a lower rate (11% compared with 14%). The overall proportion of social housing was lower at 14% compared with 18% nationally. The proportion of owner occupied stock has reduced slightly since the 2005 survey (75% compared with 78%) with the privately rented stock showing a compensating increase from 8% to 11%.

2.5 Tenure and age comparisons

2.5.1 Figure 2.3 Tenure by date of construction illustrates the differing dwelling age profile between the main private tenures.

Figure 2.3 Tenure by date of construction

Source: 2010 House Condition Survey
2.5.2 As might have been expected, the owner occupied stock (at approximately 75% of all dwellings) had a similar age profile to the overall stock position, with figures of approximately 72.3% for homes built post-1964 compared with 70.0% for the overall stock. The privately rented sector had the highest proportion of pre-1919 dwellings by a significant margin at 17.7% compared with 9.9% overall.

2.6 **Dwelling Use and Houses in Multiple Occupation**

2.6.1 Dwellings may be one of several different building types but these types may have different uses, for example a semi-detached house may have been converted into flats or be occupied as a House in Multiple Occupation (HMO).

Table 2.2 Dwelling use

<table>
<thead>
<tr>
<th>Dwelling use</th>
<th>Dwellings</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>House</td>
<td>54,470</td>
<td>94.9%</td>
</tr>
<tr>
<td>Purpose Built Flat</td>
<td>2,210</td>
<td>3.8%</td>
</tr>
<tr>
<td>Converted Flat</td>
<td>670</td>
<td>1.2%</td>
</tr>
<tr>
<td>HMO</td>
<td>60</td>
<td>0.1%</td>
</tr>
<tr>
<td>Licensable HMO</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>57,410</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

2.6.2 The vast majority of dwellings (94.9%) were houses generally occupied as built. Of the remainder, most were purpose built or converted flats. An estimated 0.1% of dwellings were HMOs, representing 60 buildings being used to house multiple households. The national average for HMOs was approximately 2%.

2.6.3 The definition of HMO is that used in the Housing Act 2004, of which only some may potentially be subject to mandatory licensing (described below). Some converted flats now come within the new HMO definition which explicitly includes converted flats where the work does not meet specified standards (generally the Building Regulations 1991) and where less than two thirds are owner occupied.

2.6.4 HMOs formed only a very small proportion of the private sector stock in Huntingdonshire with none being identified as potentially licensable HMOs. It should be borne in mind, however, that figures from the survey are estimates derived from the randomly selected sample of dwellings surveyed and, with such a small level of HMOs, there may well be some that were not selected for survey. Huntingdonshire’s own figures show that there were 400 HMOs,
2.7 **Vacant dwellings**

2.7.1 Vacant dwellings can be difficult to identify and there are frequently problems in gaining access. By using a combination of sources, including the survey, Council Tax lists, the Census and the Council’s own figures, it was possible to estimate that there were 780 vacant dwellings, 1.4% of the private housing stock within Huntingdonshire District. The national average was approximately 4.6%.

2.7.2 Based on the results taken from the stock condition survey it was estimated that 430 (0.75%) of private sector dwellings within Huntingdonshire District were long-term vacant, defined as any dwelling vacant for six months or more, or subject to unauthorised occupation. However, as figures from the survey are estimates derived from the sample of dwellings inspected they may be subject to variation.

<table>
<thead>
<tr>
<th>Vacancy Status</th>
<th>Dwellings</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied</td>
<td>56,620</td>
<td>98.62%</td>
</tr>
<tr>
<td>Vacant awaiting new owner</td>
<td>220</td>
<td>0.38%</td>
</tr>
<tr>
<td>Vacant awaiting new tenant</td>
<td>120</td>
<td>0.21%</td>
</tr>
<tr>
<td>Vacant being modernised</td>
<td>20</td>
<td>0.03%</td>
</tr>
<tr>
<td>Long term vacant*</td>
<td>430</td>
<td>0.75%</td>
</tr>
<tr>
<td>Total vacants</td>
<td>790</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total stock</td>
<td>57,410</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*Includes vacant dwellings to let where they are being modernised prior to letting or have not been let for over 6 months
Source: 2010 House Condition Survey

2.7.3 The overall estimated proportion of long term vacant dwellings (taken from the survey results) at 0.75% was well below the average for England (approximately 1.5%). Whilst the level of long term vacant dwellings is a small proportion of the private sector stock they still represent a wasted resource, with Empty Dwelling Management Orders (through the powers conferred under the Housing Act 2004), compulsory purchase orders and Section 215 of the Town and Country Planning Act 1990 being available to assist the authority with any action that they may wish to take.
3 Profile of Residents

3.1 Introduction

3.1.1 This chapter will look at some of the key characteristics of households within the surveyed dwellings to determine whether links exist with dwelling condition. As the data can only be collected from occupied dwellings the results are set against a total occupied stock of 56,620.

3.2 Age Profile

3.2.1 Figure 3.1 examines the age distribution, of heads of household within the stock, both for Huntingdonshire District and for England as a whole.

Figure 3.1 Age of head of household Huntingdonshire District and England

Source: 2010 House Condition Survey & EHS 2008

3.2.2 Data collected as part of the survey indicated that the age profile of heads of household in Huntingdonshire District differed from the national position. The proportions of heads of household generally, were lower up to the age of 45 (29.8% compared with 38.9%) with the 45 to 54 age band being the same. From 55 years onwards the proportions were 51.1% compared with 42.0% with those aged 65 and over being 31.9% compared with 42.0%). This does have some implications for private sector housing policy due to the potentially greater need for support typically associated with older households, when dealing with dwelling condition issues or adaptation needs, with many being on a low income (see figure 3.3). Owner occupiers may have substantial equity in their property that, if released, could help to assist with any dwelling condition issues, although for the private rented sector, negotiations with landlords and possible enforcement action may have to be considered.
3.3 Ethnic origin, nationality and other social characteristics

3.3.1 Residents were asked to specify the majority ethnic origin type within their household and the results are given in Table 3.1:

Table 3.1 Ethnic origin

<table>
<thead>
<tr>
<th>Ethnic Origin</th>
<th>Dwellings</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>White: English/Welsh/Scottish/Northern Irish/British</td>
<td>53,580</td>
<td>94.63%</td>
</tr>
<tr>
<td>White: Irish</td>
<td>350</td>
<td>0.62%</td>
</tr>
<tr>
<td>White: Gypsy/Traveller</td>
<td><10</td>
<td><0.01%</td>
</tr>
<tr>
<td>White: Other</td>
<td>1,560</td>
<td>2.76%</td>
</tr>
<tr>
<td>Mixed: White and Black Caribbean</td>
<td>40</td>
<td>0.07%</td>
</tr>
<tr>
<td>Mixed: White and Black African</td>
<td>170</td>
<td>0.30%</td>
</tr>
<tr>
<td>Mixed: White and Asian</td>
<td>30</td>
<td>0.05%</td>
</tr>
<tr>
<td>Mixed: Any other mixed/multiple background</td>
<td>20</td>
<td>0.04%</td>
</tr>
<tr>
<td>Asian/Asian British: Indian</td>
<td>410</td>
<td>0.72%</td>
</tr>
<tr>
<td>Asian/Asian British: Pakistani</td>
<td>160</td>
<td>0.28%</td>
</tr>
<tr>
<td>Asian/Asian British: Bangladeshi</td>
<td><10</td>
<td><0.01%</td>
</tr>
<tr>
<td>Asian/Asian British: Chinese</td>
<td>180</td>
<td>0.32%</td>
</tr>
<tr>
<td>Asian/Asian British: Any other Asian background</td>
<td>60</td>
<td>0.11%</td>
</tr>
<tr>
<td>Black African/Caribbean/Black British: African</td>
<td><10</td>
<td><0.01%</td>
</tr>
<tr>
<td>Black African/Caribbean/Black British: Caribbean</td>
<td>10</td>
<td>0.02%</td>
</tr>
<tr>
<td>Black African/Caribbean/Black British: Any Other</td>
<td><10</td>
<td><0.01%</td>
</tr>
<tr>
<td>Other: Arab</td>
<td>50</td>
<td>0.09%</td>
</tr>
<tr>
<td>Other: Any other ethnic group</td>
<td><10</td>
<td><0.01%</td>
</tr>
<tr>
<td>Total</td>
<td>56,620</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.3.2 The majority of households described their ethnic origin as being predominantly White: English/Welsh/Scottish/Northern Irish/British (94.63%). Proportionately, therefore, the other ethnic groups represent only 5.3% of private sector households. As the other ethnic groups, individually, were represented at such low levels they are not sufficiently statistically robust enough to allow meaningful comparisons to be made. However, as a point of interest, there were an estimated 850 A10 migrants which includes migrants from Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia. To which have been included A2 Bulgarian nationals (10) shown in Table 3.2 which provides a breakdown of the nationality that respondents considered themselves to be.

Table 3.2 Nationality

<table>
<thead>
<tr>
<th>Nationality</th>
<th>Dwellings</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>African</td>
<td>10</td>
<td>0.02%</td>
</tr>
</tbody>
</table>
3.4 **Household types**

3.4.1 Table 3.3 gives the distribution of different household types, within the stock, and compares this to England as a whole. Household types were derived from interviewing occupiers and determining the number of adults and children within the household. These figures were then used to determine household type. For example, ‘Other multi-person household’ for the purposes of this analysis, includes flat sharers, lone parents with non-dependent children only and households containing more than one couple or lone parent family, which follows the convention used in the English Housing Survey.
Table 3.3 Household type distribution

<table>
<thead>
<tr>
<th>Household type</th>
<th>Huntingdonshire District 2010</th>
<th>England 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple no Dependent Child</td>
<td>26,500</td>
<td>46.9%</td>
</tr>
<tr>
<td>Couple with Dependent Child</td>
<td>12,480</td>
<td>22.0%</td>
</tr>
<tr>
<td>Lone parent with dependent child</td>
<td>2,060</td>
<td>3.6%</td>
</tr>
<tr>
<td>One person household</td>
<td>13,210</td>
<td>23.3%</td>
</tr>
<tr>
<td>Other multi-person household</td>
<td>2,370</td>
<td>4.2%</td>
</tr>
<tr>
<td>Total Household Type</td>
<td>56,620</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

3.4.2 The main differences to the distribution of households types to that found nationally was the greater proportion of couple with no dependent children type (46.9% compared with 39.4%). All of the other types had lower proportions, considerably so in the case of other multi-person households (4.2% compared with 7.4%).

3.5 Length of residence

3.5.1 The proportion of households who had been resident for up to 5 years was 28.0%, which was lower than that found in the Survey of English Housing 2007/2008 (35.4%). Conversely, 23.6% had lived at their present address for 20 years or more. By sub-area, North East had the highest proportionate rate of households in the up to 4 year band (36.8%) just above the national average.

Table 3.4 Length of residence

<table>
<thead>
<tr>
<th>Area</th>
<th>Up to 4 years</th>
<th>5 to 9 years</th>
<th>10 to 19 years</th>
<th>20 to 39 years</th>
<th>40 years or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>31.4%</td>
<td>23.9%</td>
<td>20.8%</td>
<td>17.2%</td>
<td>6.7%</td>
</tr>
<tr>
<td>North East</td>
<td>36.8%</td>
<td>19.9%</td>
<td>22.9%</td>
<td>16.7%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>26.4%</td>
<td>19.4%</td>
<td>35.5%</td>
<td>15.7%</td>
<td>3.0%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>21.3%</td>
<td>26.1%</td>
<td>22.3%</td>
<td>21.8%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>34.3%</td>
<td>17.0%</td>
<td>20.4%</td>
<td>22.2%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Huntingdonshire</td>
<td>28.0%</td>
<td>22.4%</td>
<td>26.0%</td>
<td>18.0%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Survey of English Housing</td>
<td>35.4%</td>
<td>17.1%</td>
<td>18.5%</td>
<td>21.6%</td>
<td>7.4%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.6 Income

3.6.1 Residents were asked about the income of the head of household and, where appropriate, the partner of the head of household. Responses were combined to give a gross household income and the results of these are given below.
Figure 3.2 Household incomes in bands

Source: 2010 House Condition Survey

Table 3.5 Number of households within each income band

<table>
<thead>
<tr>
<th>Income band</th>
<th>No. of households Huntingdonshire District 2010</th>
<th>EHS 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under £10,000 per annum</td>
<td>6,370</td>
<td>11.2%</td>
</tr>
<tr>
<td>£10,000 - £14,999</td>
<td>5,610</td>
<td>9.9%</td>
</tr>
<tr>
<td>£15,000 - £19,999</td>
<td>11,610</td>
<td>20.5%</td>
</tr>
<tr>
<td>£20,000 - £29,999</td>
<td>12,730</td>
<td>22.6%</td>
</tr>
<tr>
<td>£30,000 - £39,999</td>
<td>6,700</td>
<td>11.8%</td>
</tr>
<tr>
<td>£40,000 - £49,999</td>
<td>5,960</td>
<td>10.5%</td>
</tr>
<tr>
<td>£50,000 and above</td>
<td>7,640</td>
<td>13.5%</td>
</tr>
<tr>
<td>Total</td>
<td>56,620</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

3.6.2

The data in figure 3.2 and the Table 3.5 show that there were higher proportions than the national average of households with an income of between £15,000 and £29,999 (43.1% compared with 28.9%). All of the other income bands had lower rates. The proportion of households within Huntingdonshire District with an income of less than £15,000 (21.2% compared with 23.0% nationally), suggests that affordability within the owner occupied stock will be an issue affecting repair and
improvement. The proportion of households with an annual income below £10,000 was very close to that found nationally (11.2% compared with 12.0%).

Table 3.6 Average weekly income by tenure

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Huntingdonshire District HCS 2010</th>
<th>England 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupied</td>
<td>£535</td>
<td>£750</td>
</tr>
<tr>
<td>Privately rented</td>
<td>£442</td>
<td>£530</td>
</tr>
<tr>
<td>Huntingdonshire District Average</td>
<td>£523</td>
<td>£710</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

3.6.3 These figures demonstrate that recent average incomes for heads of household and, where appropriate, their partner, were in Huntingdonshire, considerably lower than the averages for England. The owner occupied tenure group had average incomes that were 29% lower than the national average with the privately rented tenure group being 26% lower.

3.7 Income and age of head of household

3.7.1 Variations in income level are often associated with social characteristics such as the age of head of household, household type or disability. This section looks at the data from the survey to see what links can be shown and the possible associations between those links and unsatisfactory housing conditions described later.

Figure 3.3 High and low incomes by age of head of household

Source: 2010 House Condition Survey

3.7.2 Figure 3.3 above illustrates that low income (annual household income below £10,000 per annum) was strongly associated with the older age groups (65 years and older). High incomes were predominantly
associated with households aged between 25 to 64 years. This pattern suggests that the greatest need for assistance to vulnerable occupiers is at the oldest ends of the age range.

3.8 **Income and household type**

3.8.1 Table 3.7 compares low and high annual household income figures by household type.

Table 3.7 Low and high household incomes by household type

<table>
<thead>
<tr>
<th>Household Type</th>
<th>Low income (household income less than £10,000 per annum)</th>
<th>Medium income (household income £10,000 - £30,000 per annum)</th>
<th>High income (household income above £30,000 per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple no Dependent Child</td>
<td>0.4%</td>
<td>66.3%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Couple with Dependent Child</td>
<td>0.1%</td>
<td>36.0%</td>
<td>63.9%</td>
</tr>
<tr>
<td>Lone parent with dependent child</td>
<td>0.7%</td>
<td>47.7%</td>
<td>51.6%</td>
</tr>
<tr>
<td>One person household</td>
<td>45.2%</td>
<td>51.8%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Other multi-person household</td>
<td>16.4%</td>
<td>78.0%</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.8.2 Table 3.7 does show that clear links exist between income and household type. One person households had the highest rate of low incomes (45.2%), followed by other multi-person households (16.4%). Couple with dependent child households had greater proportions of higher incomes (63.9%) followed by lone parent with dependent child households (51.6%), but this relates to only four weighted surveys, and is, therefore, subject to statistical validity issues.

3.9 **Income and residents with disabilities**

3.9.1 It is important to note that this survey used a broad definition of disabled person (see Figure 3.5). This included residents that were frail elderly, as well as registered disabled persons and other persons with a disability.

3.9.2 When looking at the association between disability and income, 29.9% or 1,320 dwellings, of households with a disabled resident had a household income below £10,000 per annum. That was substantially higher than for those where there was no person with a disability (9.1%). The residents of these dwellings may not only have had physical difficulty dealing with repairs, but may not be able to afford alternative, more suitable accommodation provision. This will place an
emphasis on the authorities Private Sector Housing Team to develop, where there is an assessed need, a package of assistance to meet those needs.

3.10 **Benefit receipt**

3.10.1 In addition to income, householders were asked if anyone within the dwelling was in receipt of one or more of a range of benefits (see 4.10.2). Overall 10,940 (19%) households were estimated to be in receipt of a benefit. At the national level 17% of private sector households had at least one resident in receipt of a benefit, which is just over that found within this survey. The distribution of benefit receipt by tenure showed the highest proportion for the owner occupied sector at 20% compared with 13% in the privately rented sector.

Figure 3.4 Benefit receipt by tenure

![Graph showing benefit receipt by tenure](image)

3.11 **Value of dwellings and equity**

3.11.1 Owner occupiers were asked about the value of their dwelling, the level of any outstanding mortgage, any other debt and the consequent total equity. This was to allow the relationship between available equity and dwelling condition to be examined. Such relationships are relevant to the Regulatory Reform Order 2002; Government guidance focuses on local authorities moving towards facilitating loans/equity release rather than giving grants when offering financial assistance to householders.

3.11.2 The average value of a dwelling in Huntingdonshire District was £210,000. This figure was based on the average sale prices in Huntingdonshire District compiled by the Land Registry from July to September 2010. The figure was below the average value for England...
(£249,900) as well as the Cambridgeshire area (£251,400) and East Anglia (£214,100).

3.11.3 The average mortgage level for owner-occupied dwellings in Huntingdonshire, based upon occupier responses, was £82,000 resulting in an average equity of £128,000 per dwelling using the Land Registry average value.

3.12 **Residents with disabilities**

3.12.1 Residents were asked if any member of the household suffers from a long term illness or disability. It was estimated from the results of this question that 4,400 (7.8%) occupied dwellings had at least one resident with a long term illness or disability. Residents were further asked to choose the condition that best described their disability and the Figure 3.5 illustrates the results of this.

Figure 3.5 Residents with disabilities by type

![Pie chart showing disability types](source: 2010 House Condition Survey)

3.12.2 In order to address the specific housing needs of residents with a disability, the provision of Disabled Facilities Grants (DFG) by local authorities remains mandatory. The potential requirement for adaptations or equipment for disabled occupiers and the potential DFG demand are discussed in more detail below.
3.13 Adaptations/Equipment

3.13.1 Where it was indicated that a member of the household suffered from a long term illness or disability, the survey form included a section regarding the existing provision of adaptations or equipment and also whether the occupier felt there was the need for further adaptations or equipment.

3.13.2 The provision of adaptations for disabled residents is mandatory under the Disabled Facilities Grants (DFG) scheme, and local authorities must consider this when assigning budgets to housing provision. There are certain factors that mitigate this demand: firstly, DFGs are subject to means testing, except for adaptations for children and the provision of equipment, and secondly, there needs to be an assessment by an Occupational Therapist who will consider whether an adaptation is necessary and appropriate and also by the authorities disability service to establish if any recommended adaptations can be reasonably and practically undertaken taking into account the construction and configuration of the dwelling.

3.13.3 Figure 3.6 illustrates the proportion of dwellings, with residents who had existing adaptations/equipment and their perceived need for further adaptations or equipment; although it should be made clear that the following needs data has not been included as a direct result of a formal assessment of need. The chart is broken down by adaptation type.

Figure 3.6 Disabled adaptations/equipment present and required

![Proportion of all dwellings with a resident who is disabled](chart)
3.13.4 Figure 3.6 shows that grab/hand rails had the highest level of current provision, present in 88.4% of dwellings occupied by a resident with a disability, followed by a redesigned bathroom at 27.3%. The most needed adaptation equipment was again grab/hand rails at 19.3% followed by the provision of an emergency alarm at 15.7%.

3.13.5 Table 3.8 takes the figures for adaptations/equipment a step further and looks at the numbers of adaptations/equipment needed and the associated costs. Costs are estimated averages for each of the elements listed below. As a full test of resources is the only accurate way of providing a figure for costs after means testing, where applicable, some assumptions have been made in order to provide an estimated figure, with those on an income of less than £10,000 assumed to have a nil contribution, those on an income of between £10,000 and £25,000 having a 50% contribution and those on an income above that paying the full amount.

Table 3.8 Cost of adaptations for the disabled

<table>
<thead>
<tr>
<th>Adaptations and equipment</th>
<th>Numbers of adaptations and equipment *</th>
<th>Adaptation and equipment Cost</th>
<th>Cost after means testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight stair lift</td>
<td>370</td>
<td>£1,479,000</td>
<td>£1,002,000</td>
</tr>
<tr>
<td>Curved stair lift</td>
<td>140</td>
<td>£1,277,000</td>
<td>£638,000</td>
</tr>
<tr>
<td>Fixed Concrete Ramp</td>
<td>340</td>
<td>£292,000</td>
<td>£146,000</td>
</tr>
<tr>
<td>Grab/hand rails</td>
<td>860</td>
<td>£257,000</td>
<td>£116,000</td>
</tr>
<tr>
<td>Wash/Dry WC</td>
<td>130</td>
<td>£722,000</td>
<td>£43,000</td>
</tr>
<tr>
<td>Level Access Shower</td>
<td>90</td>
<td>£608,000</td>
<td>£353,000</td>
</tr>
<tr>
<td>Door Entry System</td>
<td>220</td>
<td>£67,000</td>
<td>£33,000</td>
</tr>
<tr>
<td>Emergency alarms</td>
<td>700</td>
<td>£696,000</td>
<td>£348,000</td>
</tr>
<tr>
<td>Bed/Bathroom Extension</td>
<td>30</td>
<td>£1,088,000</td>
<td>£816,000</td>
</tr>
<tr>
<td>Total</td>
<td>2,880</td>
<td>£6,486,000</td>
<td>£3,495,000</td>
</tr>
</tbody>
</table>

*Figures are for numbers of adaptations/equipment, some dwellings may need multiple provision

Source: 2010 House Condition Survey

3.13.6 The total cost of all adaptations and equipment that could potentially be fitted to benefit residents with a disability was just under £6.5 million. When the estimated means testing had been applied this total reduced to just under £3.5 million, which reflects the fact that there are some residents with disabilities with average or above average incomes.
3.13.7 It should be considered that two factors will affect the £3.5 million in terms of DFGs. Firstly, the figure does not contain any reduction for occupiers that would not be considered after a visit by an occupational therapist, as this cannot easily be factored in. Secondly, many of the residents may not have been aware of the need for an adaptation, may not have wanted an adaptation or may not have been aware that DFGs are available. The £3.5 million figure is an estimate of the amount that would need to be spent by the authority on adaptations, although this would be spread over a period of five years.

3.13.8 The figure is, however, indicative only and could vary substantially if there are significant adaptations for children (applications for which are no longer subject to the test of resources), which would significantly increase the authorities overall contribution. The figure does, however, give some indication of the potential demand for DFG that should be taken into account when considering future DFG budgets.

3.14 Owner occupiers plans to repair their property

3.14.1 Owner occupiers were asked whether they were aware of any defects requiring remedial work to their property, how much they estimated this work would cost and whether or not they would be interested in considering a number of funding options to undertake the works.

3.14.2 The great majority of owner occupiers (95.0%) indicated that they were not aware of any defects requiring repair to their property. Some 2,460 (5.0%) said that they were. Table 3.9 shows the costs estimated by occupiers for the work put into cost bands:

Table 3.9 Occupiers estimated cost of improvement works

<table>
<thead>
<tr>
<th>Improvement Cost Band</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1 to £4,999</td>
<td>87.9%</td>
</tr>
<tr>
<td>£5,000 to £9,999</td>
<td>0.0%</td>
</tr>
<tr>
<td>£10,000 to £14,999</td>
<td>1.7%</td>
</tr>
<tr>
<td>£15,000 to £19,999</td>
<td>1.8%</td>
</tr>
<tr>
<td>£20,000 to £24,999</td>
<td>0.2%</td>
</tr>
<tr>
<td>£25,000 +</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.14.3 The vast majority (87.9%) said that the work would cost under £5,000 and 8.4% that it would cost £25,000 or over.

3.14.4
Table 3.10 illustrates the responses by owner occupied residents that were aware of defects requiring repair, when asked if they would be interested in a range of funding options from the Council to assist their ability to undertake those works.
Table 3.10 Owner occupied residents prepared to consider funding from the Council

<table>
<thead>
<tr>
<th>Option</th>
<th>Yes %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero interest loan</td>
<td>8.8%</td>
</tr>
<tr>
<td>Flexible loan</td>
<td>27.4%</td>
</tr>
<tr>
<td>Equity share loan</td>
<td>20.4%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.14.5 A flexible loan had the greatest interest at 27.4% followed by an equity share loan at 20.4%, with a zero interest loan having the least interest at 8.8%.

3.14.6 16.3% of residents said that they had received a previous Council loan/grant.

3.15 Security

3.15.1 Residents were asked if a range of security measures had been fitted to their property. Table 3.11 gives a breakdown of residents’ responses to these questions.

3.15.2 The two highest levels of provision were door deadlocks (93.4%) and window locks (89.4%). Alarms were present in 28.7% of dwellings.

Table 3.11 Security measures present in property

<table>
<thead>
<tr>
<th>Secure Doors (Deadlock)</th>
<th>Door Viewers</th>
<th>Door Chains</th>
<th>Secure Windows (locks)</th>
<th>Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,600</td>
<td>38,480</td>
<td>36,450</td>
<td>51,340</td>
<td>16,500</td>
</tr>
<tr>
<td>93.4%</td>
<td>67.0%</td>
<td>63.5%</td>
<td>89.4%</td>
<td>28.7%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.16 Smoke and Carbon Monoxide detectors

3.16.1 The provision of smoke and carbon monoxide monitors was recorded with Table 3.12 providing the results.

Table 3.12 Presence of smoke and carbon monoxide monitors

<table>
<thead>
<tr>
<th>Smoke Detectors Present</th>
<th>Smoke Detectors Properly Sited</th>
<th>Smoke Detectors Mains Wired</th>
<th>CO₂ Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,460</td>
<td>51,630</td>
<td>7,350</td>
<td>10,690</td>
</tr>
<tr>
<td>93.1%</td>
<td>96.6%</td>
<td>13.8%</td>
<td>18.6%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.16.2 The vast majority of dwellings had a smoke detector present (93.1%) of which 96.6% were properly sited and 13.8% were mains wired. Only 18.6% of dwellings had a carbon monoxide monitor.
3.17 **Overcrowding**

3.17.1 In the ODPM report Overcrowding in England: the national and regional picture (2003) it stated that “Households that are statutorily overcrowded are so rare that a reliable estimate of numbers cannot be produced at a national (England) level even using data from the Survey of English Housing and the 2001 English House Condition Survey, which are relatively large surveys. It follows that estimates for individual regions cannot be produced using these sources”.

3.17.2 As with the above comments, this survey, which is considerably smaller than both of those mentioned, cannot produce any results that would be of any statistical relevance. Given that and issues revolving around the sample size, this section attempts to provide some basic information on the level of estimated overcrowding within Huntingdonshire District.

3.17.3 The existing statutory overcrowding standards were set in 1935 and restated in Part 10 of the Housing Act 1985, and include both a room standard and a space standard.

3.17.4 In the Court of Appeal case Elrify v. City of Westminster Council (2007) it was established that both of the Housing Act measurements must be calculated to establish if a statutory overcrowding situation existed.

3.17.5 The Survey of English Housing uses a Bedroom standard as an indicator of occupation density, allocating a number of bedrooms to each household according to the age, sex and marital status composition coupled with the relationship of the members to one another.

3.17.6 If the Housing Act overcrowding measurement is taken, the estimated level of overcrowding is shown in Table 3.13:

Table 3.13 Statutory measurement of overcrowding

<table>
<thead>
<tr>
<th></th>
<th>Overcrowded</th>
<th>Not Overcrowded</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>0.8%</td>
<td>99.2%</td>
</tr>
<tr>
<td>North East</td>
<td>0.2%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>0.3%</td>
<td>99.7%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>1.5%</td>
<td>98.5%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>2.2%</td>
<td>97.8%</td>
</tr>
<tr>
<td>Huntingdonshire</td>
<td>0.8%</td>
<td>99.2%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.17.7 Looking at the Survey of English Housing bedroom standard indicator of occupation density,
Table 3.14 shows the figures:
Table 3.14 Bedroom standard measurement of overcrowding

<table>
<thead>
<tr>
<th>Area Name</th>
<th>Overcrowded</th>
<th>Not overcrowded</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>0.9%</td>
<td>99.1%</td>
</tr>
<tr>
<td>North East</td>
<td>0.2%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>0.3%</td>
<td>99.7%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>2.0%</td>
<td>98.0%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>2.6%</td>
<td>97.4%</td>
</tr>
<tr>
<td>Huntingdonshire</td>
<td>0.9%</td>
<td>99.1%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

3.17.8 The bedroom standard (0.9%) had a slightly higher overall rate than the statutory standard (0.8%) which is to be expected as the bedroom standard uses a more limited room indicator of occupation density. It must, however, be taken in the context described by the ODPM report mentioned above that a reliable estimate of numbers cannot be produced. Both these systems resulted in an estimated total of between 440 and 540 overcrowded dwellings within the District. However, all the data relating to overcrowding should be treated with caution.

3.17.9 For the bedroom standard, the St Neots and South sub-area had the highest rate as was the case under the statutory standard.

3.17.10 Sections 139 to 144 of the Housing Act 2004 relate to the service of an overcrowding notice. It applies to an HMO if it has no interim or final management order in force and it is not required to be licensed under Part 2 of the Act. 25 HMOs were found to be overcrowded.
4 The Decent Homes Standard

4.1 Introduction

4.1.1 It is Government policy that everyone should have the opportunity of living in a “decent home”. The Decent Homes Standard contains four broad criteria that a property should:

A - be above the legal minimum standard for housing, and
B - be in a reasonable state of repair, and
C - have reasonably modern facilities (such as kitchens and bathrooms) and services, and
D - provide a reasonable degree of thermal comfort (effective insulation and efficient heating).

4.1.2 If a dwelling fails any one of these criteria it is considered to be “non-decent”. A detailed definition of the criteria and their sub-categories are described in the ODPM guidance: “A Decent Home – The definition and guidance for implementation” June 2006 and a detailed explanation of the standard is provided in Appendix E to this report.

4.1.3 The revised guidance did not substantially change the criteria for the decent homes standard laid out in 2002 with the exception of thermal comfort. This changed from a calculated, energy efficiency based approach to a simpler, but more practical system which takes into account the heating systems, fuel and insulation in a dwelling to determine if it provides adequate thermal comfort.

4.1.4 Obligations under the Decent Homes Standard were originally directed solely at the social housing sector. Under “The Decent Homes Target Implementation Plan” June 2003 – as modified April 2004, the ODPM outlined its commitments under Public Service Agreement (PSA) 7. These stated that PSA 7 will have been met if:

- There is a year on year increase in the proportion of vulnerable private sector households in decent homes;
- If the proportion of vulnerable private sector households in decent homes is above 65% by 2006/07.
- If the proportion of vulnerable private sector households in decent homes is above 70% by 2010/11.
- If the proportion of vulnerable private sector households in decent homes is above 75% by 2020/21.
4.1.5 Following the Comprehensive Spending Review in 2007, the Government scrapped the PSA7 target (effective from 1 April 2008). However, the percentage of vulnerable households in decent homes in the private sector remained part of CLG’s Departmental Strategic Objectives (DSO2, 2.8)

4.1.6 Due to this, the Huntingdonshire District House Condition Survey 2010 collected adequate and appropriate data to allow judgement of dwellings across all tenures against the Decent Homes Standard.

4.2 Change of emphasis and the Housing Act 2004

4.2.1 Whilst the changes under the revised definition and guidance for the decent homes standard apply, there was a change in Criterion A of the standard from April 2006. Prior to this change, Criterion A used the Housing Fitness Standard as the measure of whether a dwelling meets the minimum legal standard. From April 2006 the Housing Health and Safety Rating System (HHSRS) under Part 1 of the Housing Act 2004 replaced the former statutory fitness standard.

4.2.2 The HHSRS system assesses “hazards” within dwellings and categorises them into Category 1 and Category 2 Hazards. Local housing authorities have a duty to take action to deal with Category 1 Hazards. The Housing Health and Safety Rating System also applies to the Decent Homes Standard – if there is a Category 1 hazard at the property it will fail Criterion A of the standard.

4.2.3 A detailed definition of the Housing Health and Safety Rating System are given in the following chapter.

4.3 The meaning of non-decency

4.3.1 Concern has been raised by a number of local authorities over the term ‘non-decent’, which tends to conjure up images of dilapidated houses and serious disrepair issues. It is the case, however, that a dwelling can fail the Decent Homes Standard on a single item, such as the heating system, whilst being in a very good state of repair. The owner of such a property may well not think that there is anything wrong with their home.

4.3.2 It is possible to regard the Decent Homes Standard as an ideal standard or a level to aspire to. In practice, it is a relatively low standard and failure to meet the standard should be regarded as a trigger for action. In some cases, however, it may not be practical to make a dwelling decent and it may also not be in the best interests of the occupiers to do so. The guidance on recording of outcomes recognises that there may be instances where it is appropriate to record cases where work to achieve only partial compliance with the standard has been achieved, or where non compliance results from the occupier refusing to have work carried out.
4.4 **Overall level of non-decency**

4.4.1 Based on the House Condition Survey data 12,860 dwellings (22.4%) were classified non-decent. In England as a whole the rate was 34.4% (owner occupied and privately rented stock) making the Huntingdonshire rate lower than the national average. The all England figure was taken as the proportion of non-decent private sector dwellings from the EHS 2008. When the HHSRS for Criterion A was used for the first time in the EHCS 2006, a significant increase in Criterion A failure (homes not meeting the statutory component of the Decent Homes standard) was recorded. This rose from just over 4% under the former fitness standard to 22.4% under the HHSRS Category 1 hazard rate, increasing the overall non-decency rate from 26.8% for privately occupied dwellings in 2005 to 35.3% in 2006.

4.4.2 The Decent Homes Standard contains 4 criteria. Table 4.1 gives a breakdown of the reasons for failure:

Table 4.1 Reasons for failure of dwellings as a decent home.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Dwellings</th>
<th>Percent (of non-decent)</th>
<th>Percent (of stock)</th>
<th>Percent (EHS 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 hazard dwellings</td>
<td>7,910</td>
<td>61.5%</td>
<td>13.8%</td>
<td>23.6%</td>
</tr>
<tr>
<td>In need of repair</td>
<td>2,260</td>
<td>17.6%</td>
<td>3.9%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Lacking modern facilities</td>
<td>210</td>
<td>1.6%</td>
<td>0.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Poor degree of thermal comfort</td>
<td>6,210</td>
<td>48.3%</td>
<td>10.8%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Non-decency total</td>
<td>12,860</td>
<td>22.4%</td>
<td>34.4%</td>
<td></td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

4.4.3 The percentages by non-decent do not total 100%. This reflects the fact that the categories are not mutually exclusive; although any dwelling can fail on just one criterion, it may fail on two or more.

4.4.4 In Huntingdonshire the hierarchy of reasons for failure followed the national profile with a higher rate of failure for Category 1 Hazards than thermal comfort. Of the four Criterion, none had a higher rate than its national comparators, reflecting the more modern stock found within Huntingdonshire.

4.4.5 Prior to the reported data from the EHCS 2006 being published, which used the HHSRS for the first time, poor degree of thermal comfort was the primary reason for failure of the Decent Homes Standard. It should however, be borne in mind that excess cold was the main Category 1 Hazard reason for failure (see chapter 5) and this overlaps heavily with poor thermal comfort.
4.5 **Numbers of failures per dwelling**

4.5.1 As mentioned above, dwellings can fail to be decent for more than one reason. The total number of failures per dwelling can give an indication of the severity of problems in particular dwellings. Figure 4.1 looks at the number of failures per dwelling in non-decent dwellings.

Figure 4.1 Degree of failure of the Decent Homes Standard

![Pie chart showing failure distribution](image)

- **1 Failure, 74.8%**
- **2 Failures, 21.2%**
- **3 Failures, 4.0%**

Source: 2010 House Condition Survey

4.5.2 The majority of failures were in respect of one criterion only, with the number of dwellings with two or more failures being 25.2%. Realistically in the majority of cases this will have been related to heating/insulation issues as the excess cold hazard and thermal comfort criterion are interlinked.

4.6 **Non-decency by general characteristics**

4.6.1 Figure 4.2 shows the proportions of non-decent private sector dwellings by tenure, which follows that found nationally; the rate in the private rented sector (36.0%) being higher than that found in the owner occupied sector (20.3%).
Figure 4.2 Tenure by non-decent dwellings

Source: 2010 House Condition Survey & EHS 2008

4.6.2 Figure 4.3 examines decent homes failures by dwelling type.

Figure 4.3 Non-decent dwellings by dwelling type

Source: 2010 House Condition Survey

4.6.3 The highest rates of non-decency were found in converted flats at 64.4%. However, converted flats only represent 1.2% of the stock or 670 dwellings. Two issues arise as a result of this: firstly, they cannot be considered statistically significant and may be subject to considerable survey bias due to being based on a very small number of surveys. Secondly, at such a small proportion of the dwelling stock, it cannot logically represent a priority. The next highest rate was found in
low rise purpose built flats (less than 6 storeys) at 58.1% followed by medium/large terraced houses (33.2%) and small terraced houses (30.3%). The lowest rate was found in bungalows (14.8%).

4.6.4 Table 4.2 looks at the level of non-decency failure for each of the criterion, both by tenure and dwelling type. Some of the highest rates, for both tenure groups, were for thermal comfort failure in low rise purpose built flats (less than 6 storeys).

Table 4.2 Reasons for failure of dwellings as a decent home by tenure and dwelling type

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Dwelling type</th>
<th>Category 1 Hazards</th>
<th>Disrepair</th>
<th>Lacking modern facilities</th>
<th>Thermal comfort failure</th>
<th>Non-decent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner Occupied</td>
<td>Small terraced house</td>
<td>11.8%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>19.2%</td>
<td>28.4%</td>
</tr>
<tr>
<td></td>
<td>Medium/large terraced house</td>
<td>15.9%</td>
<td>10.8%</td>
<td>0.1%</td>
<td>10.8%</td>
<td>27.6%</td>
</tr>
<tr>
<td></td>
<td>Semi detached house</td>
<td>12.9%</td>
<td>4.1%</td>
<td>1.6%</td>
<td>8.9%</td>
<td>21.0%</td>
</tr>
<tr>
<td></td>
<td>Detached house</td>
<td>10.9%</td>
<td>3.8%</td>
<td>0.0%</td>
<td>4.4%</td>
<td>16.3%</td>
</tr>
<tr>
<td></td>
<td>Bungalow</td>
<td>9.5%</td>
<td>0.6%</td>
<td>0.0%</td>
<td>8.0%</td>
<td>15.3%</td>
</tr>
<tr>
<td></td>
<td>Converted flats</td>
<td>36.9%</td>
<td>36.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>73.8%</td>
</tr>
<tr>
<td></td>
<td>Low rise purpose built flats</td>
<td>19.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>60.2%</td>
<td>65.8%</td>
</tr>
<tr>
<td>Privately Rented</td>
<td>Small terraced house</td>
<td>24.0%</td>
<td>6.1%</td>
<td>0.0%</td>
<td>31.6%</td>
<td>36.1%</td>
</tr>
<tr>
<td></td>
<td>Medium/large terraced house</td>
<td>45.3%</td>
<td>1.4%</td>
<td>0.0%</td>
<td>14.8%</td>
<td>56.2%</td>
</tr>
<tr>
<td></td>
<td>Semi detached house</td>
<td>11.9%</td>
<td>7.6%</td>
<td>0.0%</td>
<td>7.6%</td>
<td>11.9%</td>
</tr>
<tr>
<td></td>
<td>Detached house</td>
<td>38.0%</td>
<td>1.1%</td>
<td>0.0%</td>
<td>18.4%</td>
<td>39.2%</td>
</tr>
<tr>
<td></td>
<td>Bungalow</td>
<td>6.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.7%</td>
<td>9.7%</td>
</tr>
<tr>
<td></td>
<td>Converted flats</td>
<td>11.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>62.4%</td>
<td>62.4%</td>
</tr>
<tr>
<td></td>
<td>Low rise purpose built flats</td>
<td>32.3%</td>
<td>9.8%</td>
<td>0.0%</td>
<td>51.3%</td>
<td>51.3%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

Figure 4.4 shows that, as is commonly the case, the rate of failure of the Decent Homes Standard was highest in pre-1919 dwellings at 58.3%. A general trend of reducing rates with dwelling age is then followed although the 1965 to 1980 age group was slightly above the trend line. The lowest rate was found in post-1990 dwellings (3.6%).
4.6.6 Table 4.3 shows the individual non-decency criterion failure rates broken down by tenure and date of construction. The private rented sector had a higher rate of failure in pre-1919 dwellings than the owner occupied sector, particularly for Category 1 Hazards (53.1% compared with 38.6%) and thermal comfort failure (47.9% compared with 21.5%). However, owner occupied dwellings had a higher disrepair failure rate in pre-1919, being more than twice that for the privately rented sector (16.2% compared with 6.8%).

Table 4.3 Reasons for failure of dwellings as a decent home by tenure and construction date

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Construction date</th>
<th>Category 1 Hazards</th>
<th>Disrepair</th>
<th>Lacking modern facilities</th>
<th>Thermal comfort failure</th>
<th>Non-decent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner Occupied</td>
<td>Pre 1919</td>
<td>38.6%</td>
<td>16.2%</td>
<td>0.0%</td>
<td>21.5%</td>
<td>55.1%</td>
</tr>
<tr>
<td></td>
<td>1919-1944</td>
<td>34.6%</td>
<td>1.7%</td>
<td>0.0%</td>
<td>13.7%</td>
<td>36.3%</td>
</tr>
<tr>
<td></td>
<td>1945-1964</td>
<td>14.4%</td>
<td>3.7%</td>
<td>0.0%</td>
<td>9.3%</td>
<td>20.1%</td>
</tr>
<tr>
<td></td>
<td>1965-1980</td>
<td>9.6%</td>
<td>4.1%</td>
<td>1.0%</td>
<td>6.2%</td>
<td>19.4%</td>
</tr>
<tr>
<td></td>
<td>1981-1990</td>
<td>4.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>10.4%</td>
<td>12.2%</td>
</tr>
<tr>
<td></td>
<td>Post 1990</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Privately Rented</td>
<td>Pre 1919</td>
<td>53.1%</td>
<td>6.8%</td>
<td>0.0%</td>
<td>47.9%</td>
<td>68.7%</td>
</tr>
<tr>
<td></td>
<td>1919-1944</td>
<td>24.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>24.1%</td>
</tr>
<tr>
<td></td>
<td>1945-1964</td>
<td>24.9%</td>
<td>5.8%</td>
<td>0.0%</td>
<td>10.6%</td>
<td>25.1%</td>
</tr>
<tr>
<td></td>
<td>1965-1980</td>
<td>26.6%</td>
<td>6.3%</td>
<td>0.0%</td>
<td>31.1%</td>
<td>43.8%</td>
</tr>
<tr>
<td></td>
<td>1981-1990</td>
<td>10.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>22.8%</td>
<td>22.8%</td>
</tr>
<tr>
<td></td>
<td>Post 1990</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
4.6.7 The distribution by sub-area is shown in Figure 4.5. The highest rate was recorded in the St Ives and North sub-area at 29.4%, followed by the Oxmoor sub-area (24.8%) and the North East sub-area at 24.6%. The lowest rate was found in the Huntingdon and Central sub-area at 18.4%.

Figure 4.5 Non-decent dwellings by sub-area

Source: 2010 House Condition Survey

4.7 Cost to Remedy

4.7.1 Having determined the reasons for dwellings being classified as non-decent, it is possible to indicate what level of repairs / improvements would be needed to make all dwellings decent.

4.7.2 The cost to remedy non-decency was determined by examining the specific failures of each non-decent dwelling and determining the work necessary to make the dwelling decent. This was done for each criterion of the standard and Table 4.4 shows the cost distribution for all non-decent dwellings in the stock, with the costs being based on the assumption that only those items that cause dwellings to be non-decent are dealt with.

Table 4.4 Repair cost by non-decenty reason (HHSRS)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Total Cost (£ million)</th>
<th>Average cost per dwelling (£)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 Hazard</td>
<td>£25.3</td>
<td>£3,200</td>
</tr>
<tr>
<td>Repair</td>
<td>£17.7</td>
<td>£7,800</td>
</tr>
<tr>
<td>Amenities</td>
<td>£3.5</td>
<td>£16,620</td>
</tr>
<tr>
<td>Thermal comfort</td>
<td>£9.1</td>
<td>£1,460</td>
</tr>
<tr>
<td>Total</td>
<td>£55.6</td>
<td>£4,330</td>
</tr>
</tbody>
</table>

* Rounded to nearest £10

Source: 2010 House Condition Survey
4.8 **Age of Head of Household and non-decency**

4.8.1 As part of the social survey a grid was filled in containing basic details for each of the residents in a dwelling, such as their age, working status, sex etc. It was left to residents to determine who was considered the head of the household, and therefore what the relationship between all other residents and the head was (e.g. spouse, child, parent, lodger etc).

4.8.2 Age of head of household is a useful indicator as it generally gives an impression of the age of the household and its profile; in addition dwelling conditions often vary according to age of head of household.

4.8.3 Figure 4.6 illustrates the relationship between the age of head of household and levels of non-decency. Within age groups, the highest proportionate rate of non-decency occurred where the age of head of household was aged 16 to 24 (53.6%). However, as this age group only represents 2.1% of the stock or 1,180 dwellings there are statistical significant issues due to the very small number of surveys undertaken within this group (31). The remaining age groups have very similar rates, ranging between 20.4% and 23.7%, providing a fairly even distribution of non decency for those aged 25 and over.

![Figure 4.6 Non-decency by age of head of household](source: 2010 House Condition Survey)

4.9 **Household income and non-decency**

4.9.1 The relationship between income and non-decency can be analysed by combining household income figures with failures under the Decent Homes Standard. Surprisingly, the largest proportion of dwellings found to be non-decent were occupied by heads of household with an income of £50k and over (30.0%) which reflects the highest
proportionate rate for Category 1 Hazards and the fact that Category 1 failures are less often linked to deficiencies in the fabric of the building than failures for the former fitness standard. The next highest rate was for heads of household with an income of less than £10k (26.4%) and those with an income between £15k and £20k (23.2%). The overall rate for heads of household with an income of less than £15k was 24.5%. The lowest rates were found where household income was between £40k and £50k.

Figure 4.7 Non-decency by annual household income band

Source: 2010 House Condition Survey

4.10 Private sector vulnerable occupier base-line

4.10.1 Up until the 1 April 2008, the government target for achieving decency standards in the private sector was that set by PSA7, which set a target of 65% of all dwellings occupied by vulnerable residents being made decent by 2006/07, with the baseline figure being measured against the results of the EHCS 2006-07. In practice, the most challenging target was the 70% to be met by 2010/11. As indicated previously, although the PSA7 target no longer exists, it is still a CLG Departmental Strategic Objective under DSO2, indicator 2.8).

4.10.2 Vulnerable households are defined as those in receipt of the benefits listed below, certain of which are means tested:

- Income support
- Housing benefit
- Council tax benefit
- Income based job seekers allowance
- Attendance allowance
- Disabled living allowance
- Industrial injuries disablement benefit
• War disablement pension
• Pension credit
• Working tax credit (with a disability element) [total income < £16,190]
• Child tax credit [total income < £16,190]

4.10.3 In Huntingdonshire in 2010, there were 10,940 private sector dwellings (owner occupied and privately rented) that were occupied by residents in receipt of one of the benefits listed above. Of these an estimated 2,120 were classified non-decent, which represents 19.4% of dwellings occupied by a vulnerable resident. Conversely this means that 80.6% were decent. The EHS 2008 found that 39.4% of vulnerable households were living in non-decent homes.

4.10.4 On that basis Huntingdonshire District has met the national target for 2010/11 of 70% of vulnerable households to be living in decent homes.

4.10.5 The proportion of non-decent dwellings by sub-area has already been considered earlier. Table 4.5 gives the numbers of non-decent dwellings within each sub-area with the rate of non-decency, and also lists the level of shortfall for each sub-area in terms of meeting the 70% target for vulnerable occupiers in the private sector.

4.10.6 The shortfall column considers the number of dwellings that need to be made decent in each of the sub-areas in order to meet the 2010/11 former PSA7 target of 70% of vulnerable households living in decent homes with a minus figure indicating that the target has already been met. As all of the sub-areas are showing a minus figure they have all met the 70% target.

Table 4.5 Non-decent dwellings with vulnerable households by sub-area

<table>
<thead>
<tr>
<th>Area</th>
<th>Vulnerable households in non-decent dwellings</th>
<th>Percent vulnerable households in decent dwellings</th>
<th>Percent vulnerable households in non-decent dwellings</th>
<th>Shortfall for vulnerable occupiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>650</td>
<td>82.7%</td>
<td>17.3%</td>
<td>-480</td>
</tr>
<tr>
<td>North East</td>
<td>300</td>
<td>80.6%</td>
<td>19.4%</td>
<td>-160</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>320</td>
<td>88.3%</td>
<td>11.7%</td>
<td>-500</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>760</td>
<td>70.3%</td>
<td>29.7%</td>
<td>-10</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>90</td>
<td>70.9%</td>
<td>29.1%</td>
<td>-10</td>
</tr>
<tr>
<td>Total</td>
<td>2,120</td>
<td>80.6%</td>
<td>19.4%</td>
<td>-1,160</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
4.10.7 The rates by tenure show that vulnerable owner occupied dwellings had a higher decency rate (82.2%) meeting the 70% target, whilst the much smaller privately rented sector had a lower decency rate (64.6%) and a 50 dwellings shortfall, therefore not meeting the 70% target.
5 Meeting the Decent Homes Standard – The Statutory Minimum Standard for Housing (Category 1 Hazards)

5.1 Requirement to remedy poor housing

5.1.1 Formerly, under Part XI of the Housing Act 1985, local authorities had a statutory duty to take: ‘The most satisfactory course of action’, with regard to unfit dwellings and the Act was supported by relevant statutory guidance. A range of enforcement measures were available including service of statutory notices to make dwellings fit. Closure or demolition was only appropriate in the most extreme cases.

5.1.2 With owner occupied dwellings in particular, many local authorities looked to offer financial assistance, especially where owners were on low incomes. In the private rented sector enforcement action was much more likely in respect of unfit homes.

5.1.3 From April 2006 Part XI of the Housing Act 1985 was replaced by Part 1 of the Housing Act 2004, which repealed the former housing fitness standard and through statutory instruments and statutory guidance replaced it with the Housing Health and Safety Rating System.

5.1.4 As described in Appendix D, the Act differentiates between Category 1 and Category 2 Hazards. Local authorities have a duty to take ‘the most appropriate course of action’ in respect of any hazard scored under the HHSRS as Category 1. Authorities have discretionary power to take action with Category 2 Hazards (which do not score past the threshold for Category 1). Further information on the HHSRS is given in Appendix D and below.

5.2 Definition of Hazards under the HHSRS and Category level

5.2.1 The Housing Health and Safety Rating System (HHSRS) replaced the former fitness standard and is a prescribed method of assessing individual hazards, rather than a conventional standard to give a judgment of fit or unfit. The HHSRS is evidence based – national statistics on the health impacts of hazards encountered in the home are used as a basis for assessing individual hazards.

5.2.2 The HHSRS system deals with a much broader range of issues than the previous fitness standard. It covers a total of 29 hazards in four main groups:
 - Physiological Requirements (e.g. damp & mould growth, excess cold, asbestos, carbon monoxide, radon, etc)
• Psychological Requirements (crowding and space, entry by intruders, lighting, noise)
• Protection Against Infection (domestic hygiene, food safety, personal hygiene, water supply)
• Protection Against Accidents (e.g. falls on the level, on stairs & steps & between levels, electrics, fire, collision...).

5.2.3 The HHSRS scoring system combines two elements: firstly, the probability that deficiency (i.e. a fault in a dwelling whether due to disrepair or a design fault) will lead to a harmful occurrence (e.g. an accident or illness) and the spread of likely outcomes (i.e. the nature of the injury or illness). If an accident is very likely to occur and the outcome is likely to be extreme or severe (e.g. death or a major or fatal injury) then the score will be very high.

5.2.4 All dwellings contain certain aspects that can be perceived as potentially hazardous, such as staircases and steps, heating appliances, electrical installation, glass, combustible materials, etc. It is when disrepair or inherent defective design makes an element of a dwelling significantly more likely to cause a harmful occurrence that it is scored under the HHSRS.

5.2.5 Surveyors were required to score all hazards under the HHSRS and the survey form allowed for this. Excess Cold was modelled from survey data, at the individual dwelling level, in order to provide a more accurate picture for this hazard type. The modelling of excess cold hazards by use of SAP (energy efficiency) information was outlined in CLG guidance in June 2006 and has been used by the BRE as part of the housing stock projections for excess cold hazards.

5.2.6 The modelling of excess cold hazards is based on the use of the individual SAP rating for each dwelling, which is scaled to give a hazard score. Where a dwelling has a SAP rating of less than 35, this produces a category 1 hazard score.

5.2.7 The exact scores generated under the HHSRS can be banded into one of ten bands from A to J, with bands A to C being further defined as Category 1 Hazards and those in bands D to J as Category 2. The threshold score for a Category 1 Hazard is 1,000. As stated earlier, a Local Authority has a duty to deal with any Category 1 Hazards found and a discretionary power to deal with Category 2 Hazards. This survey focuses particularly on Category 1 Hazards, but describes all hazards, including Category 2, for comparative purposes.

5.3 Overall dwelling conditions

5.3.1 The overall proportion of dwellings with a Category 1 Hazard was 13.8% compared with 23.6% (owner occupied and privately rented dwellings) found in the EHS 2008. This represented 7,910 dwellings
across Huntingdonshire District with 7,220 being houses and 690 being flats.

5.4 **Reasons for Category 1 Hazards**

5.4.1 Figure 5.1 provides a breakdown of the proportions with a Category 1 Hazard by type and ranked highest to lowest. Note: the chart excludes those hazards where there was a nil return.

Figure 5.1 Category 1 Hazards by reason, as % of Category 1 Hazards

- **Excess Cold**: 53.2%
- **Falls on Stairs**: 33.5%
- **Falls on the Level**: 30.9%
- **Falls Between Level**: 10.6%
- **Fire**: 2.1%
- **Structural collapse**: 1.5%
- **Flames and Hot Surfaces**: 0.6%
- **Food safety**: 0.1%
- **Damp and Mould Growth**: 0.1%

Source: 2010 House Condition Survey

5.4.2 The percentages do not total 100%. This reflects the fact that the categories are not mutually exclusive; although any dwelling can fail on just one Category 1 Hazard it may fail on two or more.
5.4.3 The pattern by hazard shows excess cold as the most common hazard followed by falling on stairs and then falling level surfaces. This deviates from the national rates where falls on stairs had the highest rate then followed by excess cold and falls on level surfaces.

5.5 **Severity of Category 1 Hazards**

5.5.1 One indication of the severity of Category 1 Hazard failure is the number of items that a dwelling fails the standard on. Overall, only 21.7% (1,710 dwellings) had two or more Category 1 Hazards.

5.6 **Category 1 Hazards by general characteristics**

5.6.1 This section examines the relationship between those general stock characteristics set out in chapter two, with the level of Category 1 Hazards. The following charts and commentary examine the rates of Category 1 Hazards by tenure, dwelling type and construction date.

5.6.2 As is usually the case the highest rate of Category 1 Hazard failure was found in the privately rented stock at 25.7% compared with 12.0% in the owner occupied stock.

Figure 5.2 Rates of Category 1 Hazards by tenure

![Graph showing rates of Category 1 Hazards by tenure. Owner occupied: 12.0%, Privately rented: 25.7%, Overall: 13.8%.](source: 2010 House Condition Survey)

5.6.3 Figure 5.3 shows the rates of Category 1 Hazards by build type. The highest rate was found in low rise purpose built flats (less than 6 storeys) at 26.4% followed by medium/large terraced houses (21.6%). The lowest rate was found in bungalows (9.3%).
5.6.4 Category 1 Hazards are generally much less closely linked with the deterioration of building elements than the former fitness standard, as the HHSRS system is concerned primarily with the effect of deficiencies, which may be due to design faults, as well as disrepair. In Huntingdonshire District the rates followed the usual pattern of increasing rates as dwellings became older, with the highest rate being found in pre-1919 dwellings (42.0%) and the lowest in post-1990 dwellings (0.5%).

5.6.5 The final division to be considered are Category 1 Hazard failures by sub-area. The highest rate was found in the St Ives and North sub-
area at 20.9%, followed by the North East sub-area (18.8%). The lowest rate was found in the Huntingdon and Central sub-area (8.2%).

Figure 5.5 Rates of Category 1 Hazards by sub-area

<table>
<thead>
<tr>
<th>Area</th>
<th>Category 1 hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>20.9%</td>
</tr>
<tr>
<td>North East</td>
<td>18.8%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>8.2%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>10.8%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>13.5%</td>
</tr>
<tr>
<td>Huntingdonshire overall</td>
<td>13.8%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

5.7 Category 1 Hazards by social characteristics

5.7.1 This section looks at the impact that Category 1 Hazards have on a number of social variables, including age, benefit receipt and disability.

5.7.2 Table 5.1 shows that most of the variables had rates that were lower than the Council average of 13.8%, with the exception of those aged under 25 which was substantially higher at 35.6%.

Table 5.1 Category 1 Hazards by social characteristics

<table>
<thead>
<tr>
<th>Group</th>
<th>Category 1 hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income under 10k</td>
<td>8.3%</td>
</tr>
<tr>
<td>On Benefit</td>
<td>11.8%</td>
</tr>
<tr>
<td>Under 25</td>
<td>35.6%</td>
</tr>
<tr>
<td>65 and over</td>
<td>10.3%</td>
</tr>
<tr>
<td>Resident with disability</td>
<td>8.8%</td>
</tr>
<tr>
<td>Huntingdonshire District average</td>
<td>13.8%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
5.8 **Cost of works to dwellings with a Category 1 Hazards**

5.8.1 This section seeks to present the cost not only of basic failure items, but also the comprehensive cost of repairs in Category 1 Hazard dwellings. Comprehensive repair is the level of repair and improvement needed such that no new work is required to the dwelling in the next 10 years. This level of work most closely resembles the former mandatory renovation grant regime. Table 5.2 shows the basic remedial costs, the cost for urgent works and works required within 5 years and 10 years.

5.8.2 The total cost just to rectify Category 1 Hazards was an estimated £25.3 million at an average cost per dwelling overall of £4,000. The average cost per dwelling was highest in privately rented dwellings at £4,300 compared with £2,900 in owner occupied dwellings. The total level of comprehensive repair (i.e. carrying out all works reasonably foreseen as necessary over the next 10 years) in dwellings with a Category 1 Hazard in Huntingdonshire was an estimated £103.4 million, an average of £13,100 per dwelling, with the owner occupied stock having the highest average cost at £13,700 compared with £11,200 in the private rented sector.

Table 5.2 Repair costs in Category 1 Hazard dwellings by tenure

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Remedial</th>
<th>Urgent£²</th>
<th>5 year£²</th>
<th>Comprehensive (10 year)£²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupied (£m)¹</td>
<td>17.0</td>
<td>24.3</td>
<td>29.7</td>
<td>81.7</td>
</tr>
<tr>
<td>Average (£s)</td>
<td>2,900</td>
<td>4,100</td>
<td>5,000</td>
<td>13,700</td>
</tr>
<tr>
<td>Privately Rented (£m)¹</td>
<td>8.3</td>
<td>7.4</td>
<td>7.8</td>
<td>21.6</td>
</tr>
<tr>
<td>Average (£s)</td>
<td>4,300</td>
<td>3,800</td>
<td>4,000</td>
<td>11,200</td>
</tr>
<tr>
<td>All tenures (£m)¹</td>
<td>25.3</td>
<td>31.7</td>
<td>37.5</td>
<td>103.4</td>
</tr>
<tr>
<td>Average (£s)</td>
<td>3,200</td>
<td>4,000</td>
<td>4,700</td>
<td>13,100</td>
</tr>
</tbody>
</table>

1. Figures given in millions of pounds sterling
2. Figures are cumulative and therefore include the previous column
Source: 2010 House Condition Survey

5.9 **Category 2 Hazards in bands D and E**

5.9.1 There were an estimated 10,900 (19.1%) of dwellings in Huntingdonshire District that had at least one Category 2 Hazard (Bands D and E). Of those 8,900 (81.7%) had no corresponding Category 1 hazard.

5.9.2 Figure 5.6 illustrates the distribution of Category 2 Hazards (Bands D and E) by tenure, building type and age.
5.9.3 The highest rate of Category 2 Hazards (Bands D and E) was found in the privately rented sector (28.2%) with the owner occupied sector at 17.7%.

5.9.4 By build type, converted flats had the highest rate at 39.8% (but see 4.6.3 regarding the robustness of this data) followed by small terraced houses (25.7%). The lowest rate was found in low rise purpose built flats (less than 6 storeys) at 7.3%.

5.9.5 By construction date, the 1919 to 1944 age band had the highest rate (62.6%) followed by the pre-1919 age band (39.5%). The post-1990 age band (10.4%) had a higher rate than the 1981 to 1990 age band (2.5%) which was primarily due to fall on stairs.

5.9.6 Figure 5.7 illustrates the distribution of Category 2 Hazards (Bands D and E) by hazard type and ranked highest to lowest.
Figure 5.7 Category 2 Hazards by hazard type

As with Category 1 Hazards, the most common hazard was excess cold followed by falling on stairs and falls on the level.

Figure 5.8 looks at the extent of Category 2 Hazards (Bands D and E) by sub-area. The highest rate was found in the North East sub-area (24.3%) followed by the St Neots and Central sub-area (20.5%) and the Oxmoor sub-area (20.0%), all of which had rates above the Council rate (19.1%).
Huntingdonshire District Council
Private Sector House Condition Survey
Final Report – May 2011

Figure 5.8 Category 2 Hazards by sub-area

<table>
<thead>
<tr>
<th>Area</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>16.0%</td>
</tr>
<tr>
<td>North East</td>
<td>24.3%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>17.6%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>20.5%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>20.0%</td>
</tr>
<tr>
<td>Huntingdonshire overall</td>
<td>19.1%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
6 Meeting the Decent Homes Standard – Reasonable State of Repair

6.1 Introduction

6.1.1 Criterion B of the Decent Homes Standard looks at the issue of the state of general repair of a dwelling which will fail if it meets one or more of the following:

- One or more key building components are old (which are specifically defined in the criteria) and, because of their condition need replacing or major repair or:

- Two or more other building components are old and, because of their condition need replacing or major repair.

6.1.2 A building that has component failure before the components expected lifespan does not fail the decent homes standard. A dwelling will be considered to be in disrepair if it fails on one or more major element or two or more minor elements. Major and minor element failures are listed below:

Table 6.1 Major building elements (disrepair failure)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Walls (Repair/Replace >10%)</td>
<td>80</td>
</tr>
<tr>
<td>Roofs (Replace 50% or more)</td>
<td>50 for houses</td>
</tr>
<tr>
<td></td>
<td>30 for flats</td>
</tr>
<tr>
<td>Chimney (1 or more needing partial rebuild)</td>
<td>50</td>
</tr>
<tr>
<td>Windows (Replace 2 or more windows)</td>
<td>40 for houses</td>
</tr>
<tr>
<td></td>
<td>30 for flats</td>
</tr>
<tr>
<td>Doors (Replace 1 or more doors)</td>
<td>40 for houses</td>
</tr>
<tr>
<td></td>
<td>30 for flats</td>
</tr>
<tr>
<td>Gas Boiler (Major Repair)</td>
<td>15</td>
</tr>
<tr>
<td>Gas Fire (Major Repair)</td>
<td>10</td>
</tr>
<tr>
<td>Electrics (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 6.2 Minor building elements (disrepair failure if 2 or more fail)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen (Major repair or replace 3+ items)</td>
<td>30</td>
</tr>
<tr>
<td>Bathroom (Replace 2+ items)</td>
<td>40</td>
</tr>
<tr>
<td>Central heating distribution (Major Repair)</td>
<td>40</td>
</tr>
<tr>
<td>Other heating (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>
6.2 Disrepair and general characteristics

6.2.1 In Huntingdonshire 2,260 dwellings failed Criterion B. At 3.9%, the rate of failure was well below the national rate of 6.5%.

6.2.2 The overall repair cost within Huntingdonshire was £17.7 million, an average of £7,800 per dwelling. (This is the cost of simply rectifying failures of the repair criterion of the Decent Homes Standard – it is not the cost of comprehensive repairs required over a 10 year period.) The following section gives a breakdown of repair failure by a number of key variables.

Figure 6.1 Disrepair by general characteristics

Source: 2010 House Condition Survey

6.2.3 The rate in the private rented sector at 4.5% was above that for the owner occupied sector at 3.9%.

6.2.4 By dwelling type, the highest rate was found in medium/large terraced houses (9.0%) followed by converted flats (6.5%) but as they only represent 1.2% of the stock there are statistical validity issues (see 4.6.3). The lowest rate was found in bungalows (0.6%).
6.2.5 The proportionate rate of repair failure by construction date showed the pre-1919 stock as having the highest rate (14.0%) with no disrepair found in dwellings built after 1980.

6.3 Disrepair by sub-area

6.3.1 Figure 6.2 provides a breakdown of disrepair by sub-area.

Figure 6.2 Disrepair by sub-area

<table>
<thead>
<tr>
<th>Sub-area</th>
<th>Disrepair Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>1.5%</td>
</tr>
<tr>
<td>North East</td>
<td>0.9%</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>8.0%</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>2.8%</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>11.3%</td>
</tr>
<tr>
<td>Huntingdonshire overall</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

6.3.2 The highest repair failure rate was recorded in the Oxmoor sub-area (11.3%) followed by the Huntingdon and Central sub-area (8.0%). The lowest rate was found in the North East sub-area (0.9%).

6.4 Disrepair by social characteristics

6.4.1 The impact that disrepair has on a range of social variables, including age, benefit receipt and disability, is shown in Table 6.3.

6.4.2 All of the variables had rates that were above the average Council rate (9.1%), particularly those on a low income, heads of household aged under 25 and households with at least one disabled resident. Residents within these categories would benefit from the assistance outlined in the authority’s Housing Renewal Policy, primarily under the repair assistance, disabled facilities grant and the disabled facilities assistance.
Table 6.3 Disrepair by social characteristics

<table>
<thead>
<tr>
<th>Group</th>
<th>In disrepair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income under £10k</td>
<td>11.6%</td>
</tr>
<tr>
<td>On Benefit</td>
<td>4.6%</td>
</tr>
<tr>
<td>Under 25</td>
<td>12.9%</td>
</tr>
<tr>
<td>Over 65</td>
<td>4.4%</td>
</tr>
<tr>
<td>Resident with disability</td>
<td>11.5%</td>
</tr>
<tr>
<td>Huntingdonshire District average</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
7 Meeting the Decent Homes Standard – Modern Facilities

7.1 Introduction

7.1.1 So far this report has considered Criterion A of the Decent Homes Standard: Category 1 Hazards and Criterion B: dwellings failing due to disrepair issues. The third criterion of the Decent Homes Standard is that a dwelling should have adequate modern facilities, and this chapter deals with that issue.

7.1.2 At national level, only a small proportion of the private sector stock failed on this criterion (2.9%). In Huntingdonshire, the rate was significantly lower than the national average with 210 (0.4%) dwellings failing for this reason. The low level of failure nationally, and in Huntingdonshire District, reflects the fact that a dwelling only fails if it lacks three or more of the following:

- A kitchen which is 20 years old or less
- A kitchen with adequate space and layout
- A bathroom that is 30 years old or less
- An appropriately located bathroom and WC
- Adequate noise insulation
- Adequate size and layout of common parts of flats

7.1.3 For example, if a dwelling had a kitchen and bathroom older than the specified date, it would not fail unless the kitchen had a poor layout or the bathroom was not properly located.

7.1.4 As a result of the relatively small number of dwellings failing the Decent Homes Standard on this criterion, it was not possible to further subdivide those failures to examine their tenure distribution or other characteristics. However, this chapter will examine the general provision of facilities and in particular consider the potential for a greater level of failure in the future.

7.2 Key amenities bathrooms and kitchens

7.2.1 Under the Decent Homes Standard the age of bathrooms and kitchens is of importance to the modern facilities criterion. Figure 7.1 examines the age of these two facilities in dwellings within Huntingdonshire District.
It is possible to see from the two charts that potential for failure under the facilities criterion of the Decent Homes Standard is fairly low with bathrooms as the great majority (77%) were less than 20 years old but slightly greater with kitchens as 53% were either older than the age specified in the criterion or would become so in the next 10 years. For these dwellings to fail, however, it would be necessary that one of the other elements of this criterion be breached (such as inadequate noise insulation). It is unlikely therefore that failure to replace older kitchens and bathrooms would cause any significant increase in non-decency.
8 Meeting the Decent Homes Standard – Thermal Comfort

8.1 Thermal comfort failures

8.1.1 Failure of the thermal comfort criterion, and consequently the work required to remedy that failure, is based on the combination of heating system type and insulation present within a dwelling. In Huntingdonshire 6,210 dwellings (10.8%) failed the thermal comfort criterion, which was well below the national average of 13.2%.

8.1.2 The following are the three requirements under the thermal comfort criterion of the Decent Homes Standard:

- For dwellings with gas/oil programmable heating, cavity wall insulation (if there are walls that can be insulated effectively) or at least 50mm loft insulation (if there is a loft space) is an effective package of insulation.
- For dwellings heated by electric storage heaters/ LPG/ programmable solid fuel central heating a higher specification of insulation is required: at least 200mm of loft insulation (if there is a loft) and cavity wall insulation (if there are walls that can be insulated effectively).
- All other heating systems fail (i.e. all room heater systems are considered to fail the thermal comfort standard).

8.2 Thermal comfort failures by general characteristics

8.2.1 Figure 8.1 below shows the distribution of thermal comfort failure by tenure, building type and age.

8.2.2 The private rented sector rate at 24.7% was substantially above that found in owner occupied dwellings (8.7%).

8.2.3 Low rise purpose built flats had the highest thermal comfort failure rate (55.4%) followed by converted flats at 51.4% but are represented at such a low rate (1.2%) compared with the overall stock, there are statistical robustness issue (see 4.6.3). The next highest rate was found in small terraced houses (22.3%). The lowest rate was found in detached houses (5.3%).

8.2.4 Thermal comfort failure rates usually increase with dwelling age, this was generally the case in Huntingdonshire, with pre-1919 dwellings (27.8%) having the highest rate and post-1990 dwellings the lowest rate (3.3%), although the 1981 to 1990 age band was above that trend line.
Figure 8.1 Thermal comfort failure by general characteristics

Source: 2010 House Condition Survey

8.3 Thermal comfort failure by sub-area

8.3.1 Figure 8.2 provides a breakdown by sub-area.
8.3.2 The highest rate was found in the St Ives and North sub-area at 12.8%, followed by the St Neots and South sub-area (11.1%). The lowest rate was found in the Oxmoor sub-area (8.7%).

Source: 2010 House Condition Survey
9 Energy Performance

9.1 Energy performance and SAP ratings

9.1.1 The Standard Assessment Procedure or SAP is a government rating for energy efficiency. It is used in this report in conjunction with annual CO₂ emissions figures, calculated on fuel consumption, and the measure of that fuel consumption in kilo Watt hours (kWh), to examine energy efficiency.

9.1.2 The SAP rating in this report was the energy rating for a dwelling and was based on the calculated annual energy cost for space and water heating. The calculation assumes a standard occupancy pattern, derived from the measured floor area so that the size of the dwelling did not strongly affect the result. It is expressed on a 1-100 scale. The higher the number the better the energy rating for that dwelling.

9.1.3 The software used to calculate SAP ratings for this report used SAP2005.

9.2 Distribution of SAP ratings

9.2.1 The average SAP rating in Huntingdonshire District for private sector dwellings was 54, compared to an average SAP rating of 50 nationally (for private sector dwellings only), based on the findings of the EHS 2008, which also used SAP2005.

9.2.2 Table 9.1 shows the energy performance distribution by tenure incorporating the same banding system used by the EHS 2008. The majority for each tenure group were contained within the 39 to 68 bandings, being 82.2% for owner occupied dwellings and 78.7% for the privately rented stock. The overall stock rate was 81.8% within those bands, which was higher than the national rate (73.8%).
Table 9.1 Energy performance SAP banded

<table>
<thead>
<tr>
<th>EPC SAP Range Banded</th>
<th>Owner occupied</th>
<th>Privately rented</th>
<th>Whole Stock</th>
<th>EHS 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band A/B (81-100)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Band C (69-80)</td>
<td>11.8%</td>
<td>3.2%</td>
<td>10.6%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Band D (55-68)</td>
<td>42.7%</td>
<td>33.8%</td>
<td>41.6%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Band E (39-54)</td>
<td>39.5%</td>
<td>44.9%</td>
<td>40.2%</td>
<td>40.5%</td>
</tr>
<tr>
<td>Band F (21-38)</td>
<td>5.0%</td>
<td>17.3%</td>
<td>6.6%</td>
<td>15.1%</td>
</tr>
<tr>
<td>Band G (1-20)</td>
<td>1.0%</td>
<td>0.8%</td>
<td>1.0%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey & EHS 2008

9.3 SAP by general characteristics

9.3.1 The physical characteristics of dwellings have a major effect on the efficiency of a dwelling. The number of exposed external walls and the construction materials and methods all affect the overall heat loss and therefore the energy efficiency. Different types and ages of dwellings will have different energy characteristics.

9.3.2 Figure 9.1 gives a breakdown of average SAP ratings by tenure, building type and construction date.

9.3.3 The average SAP rating for the privately rented stock was the lowest (49) with owner occupied dwellings at 55.

9.3.4 When examining SAP ratings by built form, converted flats had the lowest SAP rating at 46 (again the comments regarding small sample size at paragraph 4.6.3 should be borne in mind), followed by bungalows and low rise purpose built flats (less than 6 storeys), both at 51. The highest mean SAP rating was found, jointly, in medium/large terraced and detached houses (56).

9.3.5 Increases in SAP tend to be associated with a reduction in dwelling age; the most modern stock having the highest SAP. This pattern was followed in Huntingdonshire; the lowest mean SAP was for pre-1919 dwellings at 41 and the highest in post-1990 dwellings at 65.
Figure 9.1 SAP by general characteristics

Source: 2010 House Condition Survey

9.3.6 Developing the results from Figure 9.1 further, Table 9.2 and Table 9.3 provide a breakdown of mean SAP by tenure against construction date and dwelling type. In the majority of cases the privately rented sector had a lower SAP rating than that for the owner occupied stock, the only exceptions being for pre-1919 dwellings where the mean SAP rating was the same and 1919 to 1944 dwellings where the mean SAP rating was slightly higher.
Table 9.2 SAP by construction date and tenure

<table>
<thead>
<tr>
<th>Construction date</th>
<th>Owner Occupied (SAP)</th>
<th>Privately Rented (SAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 1919</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>1919-1944</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>1945-1964</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>1965-1980</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>1981-1990</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>Post 1990</td>
<td>65</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 9.3 SAP by dwelling type and tenure

<table>
<thead>
<tr>
<th>Dwelling type</th>
<th>Owner Occupied (SAP)</th>
<th>Privately Rented (SAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small terraced house</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Medium/large terraced house</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>Semi detached house</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>Detached house</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>Bungalow</td>
<td>52</td>
<td>43</td>
</tr>
<tr>
<td>Converted flats</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Low rise purpose built flats</td>
<td>55</td>
<td>47</td>
</tr>
</tbody>
</table>

9.3.7 Figure 9.2 shows the distribution of mean SAP ratings by sub-area.
9.3.8 The Oxmoor sub-area had the highest mean SAP rating (61) followed by the St Neots and South sub-area (57). All of the other sub-areas had rates that were very similar and close to the authority average of 54.

9.4 **Carbon Dioxide emissions**

9.4.1 As part of the 2007 Comprehensive Spending Review the Government announced a single set of indicators which would underpin the performance framework as set out in the Local Government White Paper “Strong and Prosperous Communities”. To provide a more powerful and consistent incentive to local authorities, to develop and effectively implement carbon reduction and fuel poverty strategies, included within the set of indicators were a per capita reduction in Carbon Dioxide (CO$_2$) emissions in the Local Authority area and the tackling of fuel poverty.

9.4.2 PSA Delivery Agreement 27 (Lead the global effort to avoid dangerous climate change) stated that “The overall framework for the Government’s domestic action was set out in the Climate Change Bill for which Parliamentary approval will be sought”. This was subsequently passed into legislation on 26 November 2008, through the Climate Change Act 2008, which included legally binding targets to achieve greenhouse gas emission reductions through action in the UK and abroad of at least 80% by 2050, and reductions in CO$_2$ emissions of at least 26% by 2020, against a 1990 baseline.

9.4.3 The former Labour government launched a consultation document entitled “Heat and energy saving strategy consultation” in February
2010. However, since the general election in May 2010, the new coalition government has set out its broad energy strategy through an Annual Energy Statement in June 2010. The following information may therefore be subject to change.

9.4.4 The overall aim of the consultation was to reduce annual emissions by up to 44 million tonnes of CO$_2$ in 2020, the equivalent of a 30% reduction in emissions from households compared to 2006, making a significant contribution to meeting the government’s carbon budgets.

9.4.5 One key aspect of the approach was to consider the energy needs of the ‘whole house’, putting together a more comprehensive programme of work for the whole house rather than the installation of individual measures one at a time. It was considered that modern heating offered the potential to cut energy bills and reduce CO$_2$ emissions, and the government wanted to help the development of heating networks within communities where it made sense to do so.

9.4.6 The strategy for saving energy and decarbonising heating both now and into the future, had four main objectives:

- to help more people, especially in the current difficult economic climate, as well as over the longer term, to achieve a reduction in their energy bills by using less energy;

- to reduce the UK’s emissions and increase the use of renewable energy in line with the demands of the government’s carbon budgets, their renewables target and the ultimate objective of reducing greenhouse gas emissions by 80% by 2050;

- to help maintain secure and diverse energy supplies; and

- to take advantage of the economic opportunities presented by the shift to a low carbon economy in the UK and in the rest of the world. This to help during the current economic downturn and over the longer term.

9.4.7 By 2015, it is the intention to have insulated all the lofts and cavity walls where it is practicable to do so. Although it is considered that this will not be enough to achieve the ambitions for the 2050 target of cutting emissions by 80%. Once these options have been exhausted, more substantial changes are being considered, such as small-scale energy generation and solid wall insulation, with the aim of helping up to seven million homes by 2020.

9.4.8 It was proposed to retain the current Carbon Emissions Reduction Target (CERT) until 2012, when it was thought that a more coordinated, community-based approach, working door-to-door and street-to-street to cover the needs of the whole house. This more
coordinated approach was piloted under a new Community Energy Savings Programme (CESP), launched in September 2009.

9.4.9 Since the coalition government took office they have published a proposal for “The Green Deal” which looks likely to take over from CERT when it finishes in 2012. This would provide for energy improvement costs to be met by energy suppliers and paid back by owner occupiers or tenants through savings on energy bills.

9.4.10 Huntingdonshire had no Lower Super Output areas contained within the list of areas of low income (10% most deprived in the income domain of the Index of Multiple Deprivation 2007) that qualify for the Community Energy Saving Programme.

9.4.11 The CO₂ data provided as part of this survey indicated that emissions within the private sector stock of Huntingdonshire were 247,700 tonnes per annum an average of 4.3 tonnes per annum per property or 1.9 tonnes per capita. The EHS 2008 reported total CO₂ emissions of 123.5 million tonnes per annum or 6.7 tonnes per dwelling (owner occupied and privately rented)

9.4.12 Figure 9.3 shows the range of dwelling CO₂ emissions released per annum. The majority of dwellings (67.7%) had emissions of between 2 and 5 tonnes per annum, with 26.2% having annual emissions above this. 15.5% of dwellings had emissions above 6 tonnes per annum.

Figure 9.3 Annual dwelling CO₂ emissions

Source: 2010 House Condition Survey

9.4.13 Emissions per main fuel type are given in Table 9.4; coal/wood had the highest average at 8.4 tonnes followed by oil (7.4 tonnes).
Table 9.4 Main fuel CO\(_2\) emissions

<table>
<thead>
<tr>
<th>Fuel main</th>
<th>CO(_2) (tonnes)</th>
<th>Average CO(_2) per property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Gas</td>
<td>194,610</td>
<td>4.0</td>
</tr>
<tr>
<td>LPG/Bottled Gas</td>
<td>744</td>
<td>2.8</td>
</tr>
<tr>
<td>Oil</td>
<td>34,313</td>
<td>7.4</td>
</tr>
<tr>
<td>Coal/Wood</td>
<td>1,807</td>
<td>8.4</td>
</tr>
<tr>
<td>Anthracite</td>
<td><10</td>
<td><0.01</td>
</tr>
<tr>
<td>Smokeless Fuel</td>
<td><10</td>
<td><0.01</td>
</tr>
<tr>
<td>On Peak Electricity</td>
<td>1,670</td>
<td>4.1</td>
</tr>
<tr>
<td>Off Peak Electricity</td>
<td>14,523</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.4.14 Table 9.5 examines the total CO\(_2\) emissions by each of the survey sub-areas as well as the average CO\(_2\) emissions per dwelling within each area.

Table 9.5 Areas CO\(_2\) emissions

<table>
<thead>
<tr>
<th>Area</th>
<th>CO(_2) (tonnes)</th>
<th>Average CO(_2) per property</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Ives and North</td>
<td>61,400</td>
<td>4.3</td>
</tr>
<tr>
<td>North East</td>
<td>34,700</td>
<td>4.0</td>
</tr>
<tr>
<td>Huntingdon and Central</td>
<td>84,500</td>
<td>4.8</td>
</tr>
<tr>
<td>St Neots and South</td>
<td>63,500</td>
<td>4.0</td>
</tr>
<tr>
<td>Oxmoor</td>
<td>3,600</td>
<td>3.0</td>
</tr>
<tr>
<td>Huntingdonshire</td>
<td>247,700</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.4.15 The Huntingdon and Central sub-area had the highest average emissions (4.8 tonnes) followed by the St Ives and North sub-area at (4.3 tonnes).

9.5 SAP and National Indicator 187

9.5.1 Following the 2007 comprehensive spending review guidance was issued on a change in measuring local authority performance through a revised set of indicators. There were 188 indicators covering every aspect of a Councils’ responsibilities. The coalition government abolished Local Area Agreements and the associated National Indicator sets, with data for the remaining Indicator sets continuing until they were specifically removed.

9.5.2 NI187 required local authorities to measure the proportion of households on an income related benefit living in dwellings with SAP ratings below 35 and 65 and above; the intention being to decrease the former and increase the latter. The indicator referred to ‘fuel poverty’ but the measure was actually a surrogate for fuel poverty (see 9.9). In January 2011, the National Audit Office announced that NI187 was
being deleted, with no further need to report on it to central
government. However, as it can still be used as a measurement by an
authority, if it chooses, information is provided here from the data
collected as part of the survey.

9.5.3 Table 9.6 gives a breakdown of dwellings with SAP ratings below 35
and 65 and over, as well as combining this with information on income
related benefit receipt. Note that since this is income related
benefits the total is slightly lower than that for all benefit
receipt as described in chapter three. This information can be used
as a baseline for NI187 against which future progress can be measured.

Table 9.6 SAP bands and NI187

<table>
<thead>
<tr>
<th>Huntingdonshire District HCS 2010</th>
<th>Dwellings total</th>
<th>Households with an income benefit recipient</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP less than 35</td>
<td>3,100</td>
<td>500</td>
<td>16.1%</td>
</tr>
<tr>
<td></td>
<td>5.4%</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>SAP 35 to 64</td>
<td>43,560</td>
<td>7,900</td>
<td>18.1%</td>
</tr>
<tr>
<td></td>
<td>75.9%</td>
<td>77.5%</td>
<td></td>
</tr>
<tr>
<td>SAP 65 and over</td>
<td>10,750</td>
<td>1,800</td>
<td>16.7%</td>
</tr>
<tr>
<td></td>
<td>18.7%</td>
<td>17.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57,410</td>
<td>10,200</td>
<td>17.8%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.5.4 The figures given in red are those required under NI187. They
illustrate that 4.9% of households in receipt of an income related
benefit lived in a dwelling with a SAP rating below 35 and that 17.6%
lived in a dwelling with a SAP of 65 and over.

9.6 Energy efficiency improvement

9.6.1 The great majority of dwellings (88.9%) had mains gas. The survey
found that 92.6% of dwellings had a central heating system, above the
89.7% found in the EHS 2008.

9.6.2 Table 9.7 shows the heating type found by dwelling type. Low rise
purpose built flats (less than 6 storeys) had the lowest rate of central
heating provision (35.1%). The next lowest rate was found in
converted flats (59.8%) but see 4.6.3 regarding the statistical
robustness of data for this dwelling type. The highest rates of gas
central heating provision were found in detached houses (99.0%) and
semi-detached houses (96.3%).
Table 9.7 Heating type by dwelling type

<table>
<thead>
<tr>
<th>Heating Type</th>
<th>Small terraced house</th>
<th>Medium/large terraced house</th>
<th>Detached house</th>
<th>Semi detached house</th>
<th>Bungalow</th>
<th>Converted flats</th>
<th>Low rise purpose built flats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Heating</td>
<td>79.4%</td>
<td>90.0%</td>
<td>99.0%</td>
<td>96.3%</td>
<td>94.7%</td>
<td>59.8%</td>
<td>35.1%</td>
</tr>
<tr>
<td>Storage Heaters</td>
<td>14.3%</td>
<td>7.3%</td>
<td>1.0%</td>
<td>1.6%</td>
<td>3.6%</td>
<td>37.9%</td>
<td>49.0%</td>
</tr>
<tr>
<td>Room Heaters</td>
<td>6.3%</td>
<td>2.3%</td>
<td>0.0%</td>
<td>2.0%</td>
<td>1.7%</td>
<td>0.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Portable Heating Only</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>2.3%</td>
<td>13.9%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.6.3 Table 9.8 shows the extent of insulation by dwelling type:

Table 9.8 Level of insulation by dwelling type

<table>
<thead>
<tr>
<th>Dwelling Type</th>
<th>No Loft Insulation</th>
<th>Less than 50mm</th>
<th>50mm to 100mm</th>
<th>100mm to 150mm</th>
<th>150mm to 200mm</th>
<th>200mm or more</th>
<th>No Loft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small terraced house</td>
<td>6.1%</td>
<td>0.0%</td>
<td>1.9%</td>
<td>22.3%</td>
<td>23.1%</td>
<td>46.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Medium/large terraced house</td>
<td>4.5%</td>
<td>1.4%</td>
<td>5.0%</td>
<td>8.3%</td>
<td>31.6%</td>
<td>49.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Semi detached house</td>
<td>0.7%</td>
<td>4.1%</td>
<td>4.1%</td>
<td>16.4%</td>
<td>26.9%</td>
<td>46.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Detached house</td>
<td>1.5%</td>
<td>0.9%</td>
<td>3.9%</td>
<td>21.2%</td>
<td>23.1%</td>
<td>49.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Bungalow</td>
<td>1.9%</td>
<td>2.6%</td>
<td>3.9%</td>
<td>10.8%</td>
<td>30.4%</td>
<td>50.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Converted flats</td>
<td>42.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.9%</td>
<td>13.5%</td>
<td>35.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Low rise purpose built flats</td>
<td>54.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>19.3%</td>
<td>7.9%</td>
<td>15.3%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Huntingdonshire District</td>
<td>4.5%</td>
<td>1.9%</td>
<td>3.7%</td>
<td>17.1%</td>
<td>25.2%</td>
<td>47.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>EHS 2008</td>
<td>3.4%</td>
<td>2.7%</td>
<td>21.1%</td>
<td>32.6%</td>
<td>12.5%</td>
<td>20.0%</td>
<td>7.7%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.6.4 Table 9.8 shows the breakdown of loft insulation provision within each dwelling type, including where there was no loft to insulate. Within Huntingdonshire, 47.5% of dwellings had either no loft to insulate or had loft insulation of 200mm or more, compared with 27.7% of dwellings found in the EHS 2008. The dwelling type with the highest rate of lofts with less than 200mm of insulation was found in low rise purpose built flats (less than 6 storeys) at 81.9%.
9.6.5 The provision of different heating systems and insulation within the dwelling stock does allow scope for some dwellings to have additional insulation, improved heating, draught proofing etc. Such improvements can lead to a reduction in energy consumption with consequent reduction in the emission of gases such as carbon dioxide implicated in climate change.

9.6.6 However, it should be noted that improving energy efficiency does not necessarily equate to a reduction in energy consumption. In the majority of cases there will be a reduction, but, for example, where a household is in fuel poverty and improvements are made, energy consumption may well go up. In such dwellings the occupiers may well have been heating the dwelling to an inadequate level using expensive fuel. Use of cheaper fuels can create affordable warmth, but also lead to increased energy consumption.

9.7 The cost and extent of improvement

9.7.1 The following figures are based on modelling changes in energy efficiency, brought about by installing combinations of items listed below. These are based on measures that have been provided by many local authorities and are loosely based on the Warm Front scheme.

- Loft insulation to 270mm
- Cylinder insulation to 70mm Jacket (unless foam already)
- Double Glazing to all windows
- Cavity wall insulation
- Installation of a modern high efficiency gas boiler where none is present
- Full central heating where none is present

9.7.2 The computer model entered whatever combination of these measures is appropriate for a particular dwelling taking into account the provision of heating and insulation shown by the survey.

9.8 Future improvement

9.8.1 If all combinations of improvements listed above were carried out to all dwellings, the total cost would be just under £72.1 million, an average of £1,700 per dwelling, where improvements were required.

9.8.2 The total cost of improvements given above was distributed among 42,400 dwellings, 73.9% of the stock where improvements were required. The majority of these dwellings will have complied with Building Regulations current at the time they were built and realistically most of them will currently provide an adequate level of thermal efficiency. In most cases, however, there is still scope for improvement even if only minor.
9.8.3 The following analysis looks at how many dwellings could have each type of measure applied.

Table 9.9 All energy efficiency measures that could be carried out

<table>
<thead>
<tr>
<th>Measure</th>
<th>Dwellings</th>
<th>Percent of stock</th>
<th>Cost (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loft insulation</td>
<td>30,400</td>
<td>53.0%</td>
<td>£14.6</td>
</tr>
<tr>
<td>Wall insulation</td>
<td>22,400</td>
<td>39.0%</td>
<td>£14.6</td>
</tr>
<tr>
<td>Double glazing</td>
<td>3,600</td>
<td>6.3%</td>
<td>£28.8</td>
</tr>
<tr>
<td>Cylinder insulation</td>
<td>20,300</td>
<td>35.4%</td>
<td>£1.0</td>
</tr>
<tr>
<td>New boiler</td>
<td>11,000</td>
<td>19.2%</td>
<td>£9.9</td>
</tr>
<tr>
<td>New central heating</td>
<td>1,100</td>
<td>1.9%</td>
<td>£3.3</td>
</tr>
<tr>
<td>Any measures</td>
<td>42,400</td>
<td>73.9%</td>
<td>£72.1</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.8.4 The wide range of measures indicates that, in most cases, two or more improvements could be carried out. Generally loft insulation would be an improvement on existing insulation, rather than an installation where none exists. With cylinder insulation, most improvements would be the replacement of old cylinders with jackets, for new integral foam insulated cylinders. Installation of new central heating is only indicated where the dwelling currently relied solely on room heaters as the primary heating source.

9.9 Tackling fuel poverty

9.9.1 A key issue in reducing energy consumption is tackling fuel poverty. The occupiers of a dwelling are considered to be in fuel poverty if more than 10% of their net household income would need to be spent on heating and hot water to give an adequate provision of warmth and hot water. Not only do dwellings where fuel poverty exists represent dwellings with poor energy efficiency, they are, by definition, occupied by residents with low incomes least likely to be able to afford improvements. In “Fuel Poverty in England: The Government’s Plan for Action” published in 2004, the government set a target for the total eradication of fuel poverty by November 2016.

9.9.2 There were an estimated 4,230 (7.5%) dwellings in fuel poverty in Huntingdonshire compared to approximately 15.4% based on the findings of the EHS 2008, as reported in the Annual Report on Fuel Poverty Statistics 2010, published by the Department of Energy & Climate Change (DECC).

9.9.3 A lower proportion then the national average, the 4,230 dwellings still represent a significant number of households that are in fuel poverty, presenting issues in terms of both energy efficiency and occupier health. The highest proportionate rate of fuel poverty was found in the private rented sector at 8.2% (600 households) compared with 7.4% (3,630 households) in the owner occupied sector. Figure 9.4 provides a breakdown.
9.9.4 Intervention programmes such as Warm Front have been set up to tackle fuel poverty among vulnerable households in the private rented and owner occupied sectors, and provide grant packages to undertake energy efficiency measures for those eligible.

9.9.5 By the very nature of fuel poverty, it is almost always associated with those residents on the lowest incomes. 3,040 households (72% of the households in fuel poverty) were households with incomes below £10,000 per annum, with the remaining 1,190 (28%) having incomes above £10,000 per annum. This means that the rate of fuel poverty in the 3,040 households with an income below £10,000 was 47.7%.

9.9.6 Fuel poverty is usually associated with dwellings where one or more residents are in receipt of a means tested benefit as such benefits are indicative of low income. In Huntingdonshire fuel poverty was found in 2,230 households (20.4% of households in receipt of a benefit), compared with 2,000 households (4.4%) where occupiers did not receive benefit.
9.9.7 For owner-occupiers, assistance in the form of advice can be given, as well as grants and other partnership schemes with energy efficiency companies and other organisations. The total cost of energy efficiency improvements to dwellings in fuel poverty in the owner-occupied sector, was just under £2.4 million. This expenditure requirement is distributed between the 1,250 owner-occupied dwellings in fuel poverty where works were required to meet the standard shown in 9.7.1, at an average cost per dwelling of £1,900. Within the private rented sector, the cost of energy efficiency improvements to dwellings in fuel poverty was just over £6.8 million an average of £11,400 in 600 privately rented dwellings in fuel poverty. Table 9.10 provides a breakdown.

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Fuel poor Dwellings where works required</th>
<th>Cost (millions)</th>
<th>Average cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupied</td>
<td>1,250</td>
<td>£2.4</td>
<td>£1,900</td>
</tr>
<tr>
<td>Privately rented</td>
<td>600</td>
<td>£6.8</td>
<td>£11,400</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.10 **Area focus on fuel poverty**

9.10.1 Figure 9.6 shows the rate of fuel poverty by sub-area. The highest rate was found, by a small margin, in the St Neots and South sub-area (10.6%), followed by the St Ives and North sub-area (10.3%). The North East sub-area had the lowest rate at 3.3%.
9.11 **Energy efficiency works to all other dwellings**

9.11.1 The cost of carrying out all works to all dwellings where the residents were not in fuel poverty but where potentially improvements could be made is just over £63.7 million. This represents an average expenditure of approximately £1,600 per dwelling in 40,900 dwellings.

9.11.2 Due to the high proportion of dwellings where potential improvements could be undertaken, the numbers are widespread and targeting, is therefore, not specifically concentrated in any particular area or property type. Perhaps the best targets are those most in need of improvement, in particular those dwellings that are the least energy efficient at present.

9.11.3 There were 2,200 dwellings where the household was not in fuel poverty but where the mean SAP was less than 35. To carry out all improvement works required for these dwellings would cost just under £14.9 million, with the majority (£8.1 million) of this cost being required for the privately rented stock, an average of £6,800. The cost in the owner-occupied stock was £6.7 million in 1,200 dwellings, an average of £5,600. The reason the average cost of improvements is higher is that many of these dwellings would require the installation of full central heating, insulation and other measures to bring their SAP above 35.

9.11.4 Part of the survey considered whether a range of energy measures had been installed within dwellings, including low energy light bulbs, photo voltaic cells, solar water heating and other renewable energy sources. Table 9.11 provides a breakdown of the proportion of rooms that had low energy light bulbs fitted, with the results showing a broad spread of
current provision. The proportions do however, show that just over 57% of dwellings had 50% or more rooms fitted with low energy light bulbs, with 27.7% of dwellings having 75% or more of their rooms fitted with low energy light bulbs.

Table 9.11 Low energy light bulb provision

<table>
<thead>
<tr>
<th>Range of rooms with low energy light bulbs</th>
<th>Proportion within range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% to 24%</td>
<td>14.9%</td>
</tr>
<tr>
<td>25% to 49%</td>
<td>17.9%</td>
</tr>
<tr>
<td>50% to 74%</td>
<td>29.6%</td>
</tr>
<tr>
<td>75% to 100%</td>
<td>27.7%</td>
</tr>
<tr>
<td>None</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey

9.11.5 As far as other provision is concerned, Table 9.12 shows the level of photo voltaic cells, solar water heating and other renewable energy sources. It is clear that very little provision was found.

Table 9.12 Other energy measures

<table>
<thead>
<tr>
<th>Photo Voltaic Cells</th>
<th>Solar Water Heating</th>
<th>Other Renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6%</td>
<td>0.5%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Source: 2010 House Condition Survey
10 Conclusions and Policy Implications

10.1 Introduction

10.1.1 This chapter summarises the key findings from each chapter of this report in turn. It seeks to give a summary of findings rather than specific recommendations as these should be dealt with separately in the context of current private sector housing strategy.

10.2 Stock Profile

10.2.1 The age profile of the total private stock of 57,410 dwellings in Huntingdonshire differed from the average for England in that the stock profile contains a significantly lower proportion of pre-1919 stock at 9.9% compared to the national average of 24.6%. The proportion of interwar stock was also less than the national average (3.3% compared to 17.0% nationally), the same proportion of 1945 to 1964 stock (16.9%) but with higher proportions of stock built post 1964 (69.9% compared to 41.5% nationally).

10.2.2 The building type profile in Huntingdonshire again differed from the national pattern with much higher levels of detached houses and bungalows, but with lower proportions of all other building types.

10.2.3 The tenure profile in Huntingdonshire differed from the national average with higher proportions of owner occupied dwellings (75% as opposed to 68% for England). The proportion of privately rented stock at 11% was below the national average of 14%. Social housing was represented at a lower rate (14% compared to 18% nationally).

10.2.4 The estimated proportion of houses in multiple occupation (HMOs) was 60, which was 0.1% of the stock compared with 2% across England. There were no mandatory licensable HMOs identified.

10.2.5 It has been possible to estimate that there were 790 vacant dwellings, 1.4% of the private housing stock, which is below the national average of 4.6%. Of these, an estimated 430 long term vacant properties were found (vacant for more than 6 months). This represents some 0.75% of the stock. Although this is below the national average of 1.5%, it still represents a significant wasted housing resource with Empty Dwelling Management Orders (through the powers conferred under the Housing Act 2004), compulsory purchase orders and Section 215 of the Town and Country Planning Act 1990 being available to assist the authority with any action that they may wish to take.
10.3 **Profile of Residents**

10.3.1 The average income and benefit levels within Huntingdonshire all indicate an area with a household income below the national average. House prices are also below the national average. Even so, the existing level of average house prices coupled with 21% of residents on an income of less than £15,000 makes it highly likely that affordability of housing for younger residents and first time buyers will be an issue. There may also be maintenance/adaptation issues with ‘equity rich cash poor’ older owner occupiers.

10.3.2 The majority of households (94.6%) described themselves as White: English/Welsh/Scottish/Northern Irish/British. The largest single ethnic minority group were households that describe themselves as White Other, which includes both A2 and A10 migrants (2.8%).

10.3.3 There are an estimated 4,400 households (7.8%) where there was a resident with a disability. The cost of necessary adaptations, after allowing for estimation of means testing, was estimated to be £3.5 million.

10.3.4 The overall levels of household income and benefit receipt do have a bearing on the affordability of repairs, meeting decent homes targets, vulnerability and fuel poverty.

10.4 **The Decent Homes Standard**

10.4.1 An estimated 12,860 dwellings in Huntingdonshire (22.4% of the stock) were non decent. The majority of dwellings were non-decent due to Category 1 Hazards failure (7,910 dwellings, 13.8% of the stock compared with 23.6% at the national level). Failures due to thermal comfort failure had the next highest failure rate at 10.8% compared with 13.2% nationally. The lowest levels of failure were for dwellings in need of repair (3.9%) and lacking adequate modern facilities (0.4%).

10.4.2 In Huntingdonshire non-decent dwellings were most associated with pre-1919 properties, the private rented sector, low rise purpose built flats (less than 6 storeys) and converted flats, although converted flats only form a small proportion of the dwelling stock (1.2%).

10.4.3 The highest non decency score by area is recorded in the St Ives and North sub-area, with the lowest in the Huntingdon and Central sub-area. The cost to remedy all the items that make dwellings non-decent was £55.6 million, an average of £4,330 per non-decent dwelling.

10.4.4 Up until 1 April 2008, local authorities were required to meet targets under Public Service Agreement 7 (PSA7) to reduce the number of vulnerable occupiers in non-decent, private sector dwellings. The targets were 65% for the year end 2005/06 and 70% for the year end 2010/11. Whilst monitoring against these targets is no longer
expressly required by the Government, the percentage of vulnerable households in decent homes in the private sector remains part of CLG’s Departmental Strategic Objectives (DSO2, indicator 2.8)

10.4.5 At present it is estimated that overall, Huntingdonshire met both the 65% and the 70% targets.

10.4.6 As part of the Authority’s Housing Strategy, investment in the private sector is to be targeted at the most vulnerable members of the community. Within Huntingdonshire there were 10,940 vulnerable households with 2,120 of those still living in non-decent homes. The targeting of this group will meet the stated objective, with the Housing Renewal Assistance Policy assisting this.

10.5 **Housing Health and Safety Rating System**

10.5.1 At present 7,910 (13.8%) dwellings were estimated to have at least one Category 1 Hazard. Category 1 Hazards are associated with pre-1919 dwellings, the privately rented sector and low rise purpose built flats. There is a clear association between Category 1 Hazards and heads of household aged under 25, but as this age group make up only a small proportion of heads of household (2.1%) there are statistical validity issues.

10.5.2 The highest proportion of Category 1 Hazards by area was found in the St Ives and North sub-area at 20.9% followed by the North East sub-area at 18.8%.

10.5.3 The cost to remedy all Category 1 Hazards was £25.3 million, at an average of £3,200 per dwelling. If a more comprehensive standard were adopted (no further work required for at least 10 years) to dwellings with a Category 1 Hazard, rather than just remedying the hazard(s), the costs would be £103.4 million; an average of £13,100 per dwelling.

10.5.4 The main reason for the presence of a Category 1 Hazard was excess cold followed by falls on stairs.

10.6 **Repair Costs**

10.6.1 Maintaining the repair condition of dwellings is a key requirement of the Decent Homes Standard.

10.6.2 The total requirement for repair in all dwellings that fail under the repair criterion of the Decent Homes Standard was £17.7 million, an average of £7,800 per dwelling. Due to the distribution of household income levels in Huntingdonshire, a significant part of the demand for repairs is likely to come from households where income is below £10,000 per annum and households with a disabled resident.
10.7 **Modern Facilities**

10.7.1 210 dwellings, 0.4% of the private sector housing stock, fail the Decent Homes Standard because they provide inadequate modern facilities. This is well below national average of 2.9%. The nature of this criterion of the Decent Homes Standard means that this number is unlikely to increase significantly in the coming years.

10.8 **Thermal Comfort and Energy Efficiency**

10.8.1 Tackling fuel poverty is an important issue for the Authority as it aids those residents most in need, as well as improving thermal comfort (required under the Decent Homes Standard). It also potentially reduces the number of dwellings where an excess cold Category 1 Hazard exists. There were an estimated 4,230 (7.5%) dwellings which contained households in fuel poverty within Huntingdonshire. The national average was approximately 15.4%.

10.8.2 The greatest impact, in terms of reducing fuel poverty, can be achieved by focusing on making energy efficiency improvements to dwellings with: older heads of household; heads of household in receipt of a benefit; households on low incomes, households with disabilities and the privately rented stock. The Authority may wish to consider how to encourage landlords to improve the energy efficiency of their dwellings in the private rented sector.

10.8.3 In terms of tackling fuel poverty on a geographical basis, the survey indicated that the highest rate of fuel poverty, by a small margin, was found in the St Neots and South sub-area (10.6%) followed by the St Ives and North sub-area (10.3%).

10.8.4 The average energy efficiency level in Huntingdonshire, using the Government’s Standard Assessment Procedure, was 54 (on a scale of 1 to 100). This is above the all England average of 50 from the 2008 English Housing Survey.

10.8.5 Achieving targets for energy efficiency is possible, although it is likely to become increasingly difficult to maintain the previous rates of improvement. Achieving targets will need to involve all dwellings that can have improvements made and therefore private, as well as public, investment will need to be encouraged.

10.8.6 In general, the nature of much of the stock means that mains gas is widespread and gas central heating is common. This will be one of the factors in the SAP rating exceeding the national average.
Appendix A-Index of tables and figures

A.1 The following is a list of tables throughout the main report which are referenced to the relevant chapter number by the first digit of the table number.

Table 1.1 Private Sector stock totals by sub-area ... 14
Table 2.1 Tenure proportions ... 17
Table 2.2 Dwelling use .. 18
Table 2.3 All dwellings by Occupancy Status .. 19
Table 3.1 Ethnic origin .. 22
Table 3.2 Nationality .. 22
Table 3.3 Household type distribution ... 23
Table 3.4 Length of residence .. 23
Table 3.5 Number of households within each income band 24
Table 3.6 Average weekly income by tenure ... 25
Table 3.7 Low and high household incomes by household type 26
Table 3.8 Cost of adaptations for the disabled .. 30
Table 3.9 Occupiers estimated cost of improvement works 31
Table 3.10 Owner occupied residents prepared to consider funding from the Council .. 32
Table 3.11 Security measures present in property 32
Table 3.12 Presence of smoke and carbon monoxide monitors 32
Table 3.13 Statutory measurement of overcrowding 33
Table 3.14 Bedroom standard measurement of overcrowding 34
Table 4.1 Reasons for failure of dwellings as a decent home 37
Table 4.2 Reasons for failure of dwellings as a decent home by tenure and dwelling type ... 40
Table 4.3 Reasons for failure of dwellings as a decent home by tenure and construction date ... 41
Table 4.4 Repair cost by non-decency reason (HHSRS) 42
Table 4.5 Non-decent dwellings with vulnerable households by sub-area 45
Table 5.1 Category 1 Hazards by social characteristics 52
Table 5.2 Repair costs in Category 1 Hazard dwellings by tenure 53
Table 6.1 Major building elements (disrepair failure) 57
Table 6.2 Minor building elements (disrepair failure if 2 or more fail) 57
Table 6.3 Disrepair by social characteristics .. 60
Table 9.1 Energy performance SAP banded ... 67
Table 9.2 SAP by construction date and tenure 69
Table 9.3 SAP by dwelling type and tenure ... 69
Table 9.4 Main fuel CO\textsubscript{2} emissions .. 73
Table 9.5 Areas CO\textsubscript{2} emissions .. 73
Table 9.6 SAP bands and NI187 ... 74
Table 9.7 Heating type by dwelling type .. 75
Table 9.8 Level of insulation by dwelling type .. 75
Table 9.9 All energy efficiency measures that could be carried out 77
Table 9.10 Fuel poverty energy improvement cost by tenure......................... 79
Table 9.11 Low energy light bulb provision.. 81
Table 9.12 Other energy measures... 81

The following is a list of figures throughout the report which are referenced to the relevant chapter number by the first digit of the table number.

Figure 1.1 Sub areas .. 13
Figure 2.1 Dwelling age profile England and Huntingdonshire District 15
Figure 2.2 Dwelling type profile Huntingdonshire District and England 16
Figure 2.3 Tenure by date of construction .. 17
Figure 3.1 Age of head of household Huntingdonshire District and England 20
Figure 3.2 Household incomes in bands ... 24
Figure 3.3 High and low incomes by age of head of household 25
Figure 3.4 Benefit receipt by tenure ... 27
Figure 3.5 Residents with disabilities by type... 28
Figure 3.6 Disabled adaptations/equipment present and required 29
Figure 4.1 Degree of failure of the Decent Homes Standard........................... 38
Figure 4.2 Tenure by non-decent dwellings .. 39
Figure 4.3 Non-decent dwellings by dwelling type 39
Figure 4.4 Non-decent dwellings by date of construction 41
Figure 4.5 Non-decent dwellings by sub-area .. 42
Figure 4.6 Non-decency by age of head of household 43
Figure 4.7 Non-decency by annual household income band 44
Figure 5.1 Category 1 Hazards by reason, as % of Category 1 Hazards 49
Figure 5.2 Rates of Category 1 Hazards by tenure 50
Figure 5.3 Rates of Category 1 Hazards by building type............................. 51
Figure 5.4 Rates of Category 1 Hazards by construction date 51
Figure 5.5 Rates of Category 1 Hazards by sub-area 52
Figure 5.6 Category 2 Hazards by general characteristics 54
Figure 5.7 Category 2 Hazards by hazard type ... 55
Figure 5.8 Category 2 Hazards by sub-area ... 56
Figure 6.1 Disrepair by general characteristics .. 58
Figure 6.2 Disrepair by sub-area .. 59
Figure 7.1 Bathroom and Kitchen age... 62
Figure 8.1 Thermal comfort failure by general characteristics 64
Figure 8.2 Average thermal comfort failure by sub-area 65
Figure 9.1 SAP by general characteristics .. 68
Figure 9.2 Mean SAP by sub-area .. 70
Figure 9.3 Annual dwelling CO₂ emissions .. 72
Figure 9.4 Fuel poverty by tenure .. 78
Figure 9.5 Fuel poverty by benefit receipt .. 79
Figure 9.6 Fuel poverty by sub-area .. 80
Appendix B- Methodology

B.1 The survey used a stratified random sample of 2,000 dwellings from an address file supplied by Huntingdonshire District Council. The sample was a stratified random sample to give representative findings across the authority, with the objective of gaining as many surveys as possible.

B.2 All addresses on the original address list were assigned an ID number and a random number generating computer algorithm was used to select the number of addresses specified within each sub area.

B.3 The survey incorporates the entire private sector stock, excluding registered social landlords (Housing Associations).

B.4 Each dwelling selected for survey was visited a minimum of three times where access failed and basic dwelling information was gathered including a simple assessment of condition if no survey was ultimately possible. To ensure the sample was not subject to a non-response bias, the condition of the dwellings where access was not achieved was systematically compared with those where the surveyors were successful. Where access was achieved, a full internal inspection was carried out including a detailed energy efficiency survey. In addition to this, where occupied, an interview survey was undertaken.

B.5 The basic unit of survey was the ‘single self-contained dwelling’. This could comprise a single self-contained house or a self contained flat. Where more than one flat was present the external part of the building, encompassing the flat and any access-ways serving the flat were also inspected.

B.6 The house condition survey form is based on the survey schedule published by the ODPM in the 2000 guidelines (Local House Condition Surveys 2000 HMSO ISBN 0 11 752830 7).

B.7 The data was weighted using the CLASSIC Reports software. Two approaches to weighting the data have been used.

B.8 The first method is used for data such as building age, which has been gathered for all dwellings visited. In this case the weight applied to the individual dwellings is very simple to calculate, as it is the reciprocal of the sample fraction. Thus if 1 in 10 dwellings were selected the sample fraction is 1/10 and the weight applied to each is 10/1.

B.9 Where information on individual data items is not always present, i.e. when access fails, then a second approach to weighting the data is taken. This approach is described in detail in the following appendix, but a short description is offered here.
B.10 The simplest approach to weighting the data to take account of access failures is to increase the weight given to the dwellings where access is achieved by a proportion corresponding to the access failures. Thus if the sample fraction were 1/10 and 10 dwellings were in a sample the weight applied to any dwelling would be 10/1 which would give a stock total of 100. However, if access were only achieved in 5 dwellings the weight applied is the original 10/1 multiplied by the compensating factor, 10/5. Therefore 10/1 x 10/5 = 20. As there are only 5 dwellings with information the weight, when applied to five dwellings, still yields the same stock total of 100. The five dwellings with no data are ignored.

B.11 With an access rate above 50% there may be concern that the results will not be truly representative and that weighting the data in this manner might produce unreliable results. There is no evidence to suggest that the access rate has introduced any bias. When externally gathered information (which is present for all dwellings) is examined the stock that was inspected internally is present in similar proportions to those where access was not achieved suggesting no serious bias will have been introduced.

B.12 Only those dwellings where a full survey of internal and external elements, energy efficiency, housing health and safety and social questions were used in the production of data for this report. A total of 1,021 such surveys were produced.

B.13 The use of a sample survey to draw conclusions about the stock within the area as a whole introduces some uncertainty. Each figure produced is subject to sampling error, which means the true result will lie between two values, e.g. 5% and 6%. For ease of use, the data are presented as single figures rather than as ranges. A full explanation of these confidence limits is included in the following appendix.
Appendix C - Survey Sampling

Sample Design

C.1 The sample was drawn from the Huntingdonshire District address file derived from Council Tax records, using the Building Research Establishment (BRE) stock modeling data. This allocated dwellings into five bands (strata), based on the projection of vulnerably occupied non-decent dwellings. This form of stratification concentrates the surveys in areas with the poorest housing conditions and allows more detailed analysis. This procedure does not introduce any bias to the survey as results are weighted proportionally to take account of the over-sampling.

C.2 The models are based on information drawn from the Office of National Statistics Census data, the Land Registry, the English House Condition Survey and other sources. It is this data that is used to predict dwelling condition and identify the ‘hot-spots’ to be over-sampled.

Stock total

C.3 The stock total is based initially on the address list; this constitutes the sample frame from which a proportion (the sample) is selected for survey. Any non-dwellings found by the surveyors are marked as such in the sample; these will then be weighted to represent all the non-dwellings that are likely to be in the sample frame. The remaining dwellings surveyed are purely dwellings eligible for survey. These remaining dwellings are then re-weighted according to the original sample fractions and produce a stock total.

C.4 In producing the stock total the amount by which the total is adjusted to compensate for non-dwellings is estimated, based on how many surveyors found. With a sample as large as the final achieved data-set of 1,021 dwellings however, the sampling error is likely to be very small and the true stock total is likely, therefore, to be very close to the 57,410 private sector dwellings reported. Sampling error is discussed later in this section.

Weighting the data

C.5 The original sample was drawn from the Huntingdonshire District Address file. The sample fractions used to create the sample from this list can be converted into weights. If applied to the basic sample these weights would produce a total equal to the original address list. However, before the weights are applied the system takes into account all non-residential and demolished dwellings. This revised sample total is then weighted to produce a total for the whole stock, which will be slightly lower than the original total from which the sample was drawn.
The survey response rate

C.6 The following table gives a breakdown of the response rate to the survey.

Table C.1 Response rates

<table>
<thead>
<tr>
<th></th>
<th>Dwellings</th>
<th>Percent of addresses issues</th>
<th>Percent of traceable dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses Issued</td>
<td>2,000</td>
<td>100.0%</td>
<td>N/a</td>
</tr>
<tr>
<td>Non Residential</td>
<td>1</td>
<td>0.1%</td>
<td>N/a</td>
</tr>
<tr>
<td>Untraceable</td>
<td>0</td>
<td>0.0%</td>
<td>N/a</td>
</tr>
<tr>
<td>Demolished</td>
<td>0</td>
<td>0.0%</td>
<td>N/a</td>
</tr>
<tr>
<td>Traceable eligible</td>
<td>1,999</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Vacant dwellings</td>
<td>38</td>
<td>1.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Internal Data Collected</td>
<td>1,021</td>
<td>51.1%</td>
<td>51.1%</td>
</tr>
</tbody>
</table>

C.7 The Survey achieved a response rate of 51.1%, after taking into account ineligible dwellings. Vacant dwellings were not excluded as these are legitimate targets for survey and 25 of the 38 identified were able to be given full surveys.

Dealing with non-response

C.8 Where access fails at a dwelling selected for survey the easiest strategy for a surveyor to adopt is to seek access at a neighbouring property. Unfortunately this approach results in large numbers of dwellings originally selected subsequently being excluded from the survey. These are the dwellings whose occupiers tend to be out all day, i.e. mainly the employed population. The converse of this is that larger numbers of dwellings are selected where the occupiers are at home most of the day, i.e. older persons, the unemployed and families with young children. This tends to bias the results of such surveys as these groups are often on the lowest incomes and where they are owner-occupiers they are not so able to invest in maintaining the fabric of their property.

C.9 The methods used in this survey were designed to minimise the effect of access failures. The essential features of this method are; the reduction of access failures to a minimum by repeated calls to dwellings and the use of first impression surveys to adjust the final weights to take account of variations in access rate.

C.10 Surveyors were instructed to call on at least three occasions and in many cases they called more often than this. At least one of these calls was to be outside of normal working hours, thus increasing the chance of finding someone at home.
C.11 Where access failed this normally resulted in a brief external assessment of the premises. Among the information gathered was the surveyor’s first impression of condition. This is an appraisal of the likely condition of the dwelling based on the first impression the surveyor receives of the dwelling on arrival. It is not subsequently changed after this, whatever conditions are actually discovered.

C.12 Where access fails no data is collected on the internal condition of the premises. During data analysis weights are assigned to each dwelling according to the size of sample fraction used to select the individual dwelling.

C.13 The final weights given to each dwelling are adjusted slightly to take into account any bias in the type of dwellings accessed. Adjustments to the weights (and only the weights) are made on the basis of the tenure, age and first impression scores from the front-sheet only surveys.

Sampling error

C.14 Results of sample surveys are, for convenience, usually reported as numbers or percentages when in fact the figure reported is at the middle of a range in which the true figure for the population will lie. This is due to the fact that a sample will be subject to error since one dwelling is representing more than one dwelling in the results. The larger the sample, the smaller the error range of the survey and if the sample were the same size as the population the error range would be zero. Note: population is a statistical term referring to the whole; in this case the population is the total number of private sector dwellings.

C.15 The error range of the survey can be expressed in terms of the amount above or below a given figure that the true result is expected to lie. For example, in what range does the true figure for the proportion of dwellings with a category one hazard lie. This error range is also affected by how confident we want to be about the results. It is usual to report these as the 95% confidence limits, i.e. the range either side of the reported figure within which one can be 95% confident that the true figure for the population will lie. In other words, if we re-ran the whole survey 100 times, we would expect that 95 times out of 100 the result would fall within a given range either side of the reported figure. This range is referred to as the standard deviation.

C.16 The calculation for standard deviation, within 95% confidence limits, is the standard error multiplied by 1.96. The following is the formula for calculating standard error:

\[
\text{s.e.}(\hat{p}_{\text{sr}}) = \sqrt{\left(1 - \frac{n}{N}\right) \frac{p(1-p)}{n}}
\]

Where \(s.e.(\hat{p}_{\text{sr}})\) is the notation to describe the general formula for the standard error for a simple random sample.
\[N \] = the number of dwellings in the population.
\[n \] = the number of dwellings in the sample.
\[p \] = the proportion of dwellings in the sample with a particular attribute such as category one hazards.

C.17 This formula can be used to calculate the confidence limits for the results of any attribute such as category one hazards. Table C.2 gives a number of sample sizes and the confidence limits for a range of different possible results.

C.18 For this survey the estimate of dwellings with a category 1 hazard was 13.8%. Calculating the standard deviation for this figure, and using the 95% confidence limits, we find that the true figure lies in a range of + or – 2.1%. In other words one can say that 95% of all samples chosen in this way would give a result in the range between 11.7% and 15.9%.

C.19 The standard deviation figure of + or – 2.1%, however, would only stand true if this were a simple random sample. In other words, it would only be true if the 1,021 surveys had been selected totally at random from the whole private sector housing stock. This was not the case for this survey as stratified random sampling was used in order to concentrate on non-decent dwellings occupied by vulnerable residents.

C.20 Because the survey was a stratified random sample, an altered version of the standard deviation calculation needs to be used. This more complex formula takes into account the results for each individual stratum within the survey. When this formula is applied the standard deviation for the survey increases to + or – 3.1%. In other words, we can be 95% confident that the level of category one hazards present in the private sector housing stock will fall somewhere between 10.7% and 16.9%.

C.21 The following formula is that used to calculate the standard error of a stratified random sample. Multiplying the result by 1.96 then gives the standard deviation within 95% confidence limits:

\[
\text{s.e.}(p) = \sqrt{\frac{1}{N} \sum \frac{N_i}{n_i} \frac{p_i(1 - p_i)}{n_i - 1}}
\]

Where \(s.e.(p) \) is the notation to describe the general formula for the standard error for a stratified random sample.

\[N \] = the number of dwellings in the population.
\[N_i \] = the population of dwellings in an individual stratum of the sample.
\[n_i \] = the number of dwellings in an individual stratum of the sample.
\[p_i \] = the proportion of dwellings in the sample with a particular attribute such as category one hazards.
Table C.2 95% per cent confidence limits for a range of possible results and sample sizes

<table>
<thead>
<tr>
<th>Expected result as per cent</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.9</td>
<td>4.2</td>
<td>3.4</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>7.8</td>
<td>5.5</td>
<td>4.5</td>
<td>3.9</td>
<td>3.5</td>
<td>3.2</td>
<td>3.0</td>
<td>2.8</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>30</td>
<td>9.6</td>
<td>6.8</td>
<td>5.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.0</td>
<td>3.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>40</td>
<td>9.6</td>
<td>6.9</td>
<td>5.7</td>
<td>4.9</td>
<td>4.4</td>
<td>4.1</td>
<td>3.8</td>
<td>3.5</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>50</td>
<td>9.6</td>
<td>6.8</td>
<td>5.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.0</td>
<td>3.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>60</td>
<td>9.6</td>
<td>6.8</td>
<td>5.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.0</td>
<td>3.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>70</td>
<td>9.6</td>
<td>6.8</td>
<td>5.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.0</td>
<td>3.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>80</td>
<td>7.8</td>
<td>5.5</td>
<td>4.5</td>
<td>3.9</td>
<td>3.5</td>
<td>3.2</td>
<td>3.0</td>
<td>2.8</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>90</td>
<td>5.9</td>
<td>4.2</td>
<td>3.4</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Very small samples and zero results

C.22 When sub-dividing the results of a sample survey by multiple variables, it is possible to produce a result where no survey carried out matches these criteria. In such a case the result given will be zero, however, this can give a false impression that no such dwellings exist. In reality, it may well be possible that a very small number of dwellings, with the given characteristics, are present, but that in numbers that are too low to have been randomly picked by the sample.

C.23 In the case of the 2010 Huntingdonshire District HCS, the average weight is approximately 56 (57,410 private sector dwellings divided by 1,021 surveys). As a consequence, if there are fewer than 100 dwellings of a certain type within the Council, the result from the survey will tend to be a very crude measure. This is because, based on the average weight, only a result of 56, 112 or 168 could be given, which if, in reality, there are 50 dwellings with a certain characteristic, is fairly inaccurate.

C.24 Because of the points outlined above, the reader is encouraged to view extremely small or zero results with caution. It should be considered that these represent a small but indeterminate total, rather than none at all.
Appendix D – Legislative Requirements

D.1 Section 605 of the Housing Act 1985 (as amended) placed a duty on Local Authorities to consider the condition of the stock within their area, in terms of their statutory responsibilities to deal with unfit housing, and to provide assistance with housing renewal. Section 3 of the Housing Act 2004 replaced this with a similar duty to keep housing conditions under review.

D.2 The Regulatory Reform (Housing Assistance) (England and Wales) Order 2002 came into effect on the 19 July 2003 and led to major change in the way Local Authorities can give financial help for people to repair or improve private sector homes. Before the Order, the Government set clear rules which controlled the way financial help could be given and specified the types of grant which could be offered. The Order set aside most of these rules (apart from the requirement to give mandatory Disabled Facility Grants). It now allows Local Authorities to adopt a flexible approach, using discretion to set up their own framework for giving financial assistance to reflect local circumstances, needs and resources.

D.3 The Office of the Deputy Prime Minister (ODPM), published guidance under Circular 05/2003. In order to use the new freedom, a Local Authority must prepare and publish a Private Sector Renewal Policy. The policy must show that the new framework for financial assistance is consistent with national, regional and local policies. In particular, it has to show that the local priorities the strategy is seeking to address have been identified from evidence of local housing conditions including stock condition.

D.4 The Housing Act 2004 received Royal Assent in November 2004. The Act makes a number of important changes to the statutory framework for private sector housing, which came into effect in April 2006:

- The previous fitness standard and the enforcement system have been replaced by the new Housing Health and Safety Rating System (HHSRS).
- The compulsory licensing of higher risk houses in multiple occupation (HMO) (three or more storeys, five or more tenants and two or more households).
- New discretionary powers including the option for selective licensing of private landlords, empty dwelling management orders and tenancy deposit protection.
D.5 Operating Guidance was published on the Housing Health and Safety Rating System in February 2006. This guidance describes the new system and the methods for measurement of hazards, as well as the division of category 1 and 2 hazards. Guidance has been issued by the ODPM on the licensing provisions for HMOs, which describes the high risk HMOs that require mandatory licensing and those that fall under additional, voluntary licensing.

D.6 As the Rating System has now replaced the fitness standard, this report will deal with findings based on statutory hazards, not unfitness.

Mandatory Duties

- Unfit houses (Housing Act 1985) - to take the most satisfactory course of action – works to make property fit, closure/demolition or clearance declaration.

With effect from April 2006 replaced by:

- Category 1 Hazards, Housing Health and Safety Rating System (HHSRS) (Housing Act 2004) – to take the most satisfactory course of action – improvement notices, prohibition orders, hazard awareness notices, emergency remedial action, emergency prohibition orders, demolition orders or slum clearance declaration.

- Houses in Multiple Occupation (Housing Act 1985) - to inspect certain HMOs, to keep a register of notices served, to require registration where a registration scheme is in force.

With effect from April 2006 replaced by:

- HMO Licensing by the Authority (Housing Act 2004) of all HMOs of three or more storeys, with five or more residents and two or more households. Certain exceptions apply and are defined under sections 254 to 259 of the Housing Act 2004.

- Overcrowding - (Housing Act 1985) - to inspect and report on overcrowding

Now In Addition

- Overcrowding – (Housing Act 2004) – to inspect and report on overcrowding as defined under sections 139 to 144 of the Housing Act 2004 along with statutory duty to deal with any category 1 overcrowding hazards found under the HHSRS.

- The provision of adaptations and facilities to meet the needs of people with disabilities (Housing Grants, Construction and Regeneration Act 1996) - to approve applications for Disabled Facilities Grants for facilities and/or access

- Energy Conservation (Home Energy Conservation Act 1995) - to have in place a strategy for the promotion and adoption of energy efficiency measures and to work towards specified Government targets to reduce fossil fuel use.
Appendix E - Definition of a Non-decent Home

Measure of a decent home

E.1 A dwelling is defined as non-decent if it fails any one of the following 4 criteria:

Table E.1 Categories for dwelling decency

<table>
<thead>
<tr>
<th></th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>It meets the current statutory minimum standard for housing – at present that it should not have a Category 1 hazard under the HHSRS</td>
</tr>
<tr>
<td>B</td>
<td>It is in a reasonable state of repair – has to have no old and defective major elements*</td>
</tr>
<tr>
<td>C</td>
<td>It has reasonably modern facilities and services – Adequate bathroom, kitchen, common areas of flats and is not subject to undue noise</td>
</tr>
<tr>
<td>D</td>
<td>Provides a reasonable degree of thermal comfort</td>
</tr>
</tbody>
</table>

* Described in more detail below

E.2 Each of these criteria has a sub-set of criteria, which are used to define such things as ‘providing a reasonable degree of thermal comfort’. The exact details of these requirements are covered in the aforementioned ODPM guidance (see 4.1.2).

Applying the standard

E.3 The standard is specifically designed in order to be compatible with the kind of information collected as standard during a House Condition Survey (HCS). All of the variables required to calculate the standard are contained within a complete data set.

E.4 The four criteria used to determine the decent homes standard have specific parameters. The variables from the survey used for the criteria are described below:
Criterion A:

E.5 Criterion A is simply determined as whether or not a dwelling fails the current minimum standard for housing. This is now the Housing Health and Safety Rating System (HHSRS) – specifically Category 1 Hazards. All dwellings surveyed were marked on the basis of the HHSRS and if any one or more Category 1 Hazards was identified the dwelling was deemed to fail under criterion A of the Decent Homes Standard.

Criterion B:

E.6 Criterion B falls into 2 parts: firstly, if any one of a number of key major building elements is both in need of replacement and old, then the dwelling is automatically non-decent. Secondly, if any two of a number of key minor building elements are in need of replacement and old, then the dwelling is automatically non-decent. The elements in question are as follows:

Table E.2 Major Elements (1 or more)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Walls (Repair/Replace >10%)</td>
<td>80</td>
</tr>
<tr>
<td>Roofs (Replace 50% or more)</td>
<td></td>
</tr>
<tr>
<td>Chimney (1 or more needing partial rebuild)</td>
<td>50</td>
</tr>
<tr>
<td>Windows (Replace 2 or more windows)</td>
<td>40 for houses 30 for flats</td>
</tr>
<tr>
<td>Doors (Replace 1 or more doors)</td>
<td>40 for houses 30 for flats</td>
</tr>
<tr>
<td>Gas Boiler (Major Repair)</td>
<td>15</td>
</tr>
<tr>
<td>Gas Fire (Major Repair)</td>
<td>10</td>
</tr>
<tr>
<td>Electrics (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>

Table E.3 Minor Elements (2 or more)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen (Major repair or replace 3+ items)</td>
<td>30</td>
</tr>
<tr>
<td>Bathroom (Replace 2+ items)</td>
<td>40</td>
</tr>
<tr>
<td>Central heating distribution (Major Repair)</td>
<td>40</td>
</tr>
<tr>
<td>Other heating (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>
Criterion C:

E.7 Criterion C requires the dwelling to have reasonably modern facilities. These are classified as the following:

Table E.4 Age categories for amenities

<table>
<thead>
<tr>
<th>Amenity</th>
<th>Defined as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasonably modern kitchen</td>
<td>Less than 20 yrs</td>
</tr>
<tr>
<td>Kitchen with adequate space and layout</td>
<td>If too small or missing facilities</td>
</tr>
<tr>
<td>Reasonably modern bathroom</td>
<td>Less than 30 yrs</td>
</tr>
<tr>
<td>An appropriately located bathroom and W.C.</td>
<td>If unsuitably located etc.</td>
</tr>
<tr>
<td>Adequate noise insulation</td>
<td>Where external noise a problem</td>
</tr>
<tr>
<td>Adequate size and layout of common parts</td>
<td>Flats</td>
</tr>
</tbody>
</table>

E.8 You may notice that the age definition for kitchens and bathrooms differs from criterion B. This is because it was determined that a decent kitchen, for example, should generally be less than 20 years old but may have the odd item older than this. The same idea applies for bathrooms.

Criterion D:

E.9 The dwelling should provide an adequate degree of thermal comfort. It is currently taken that a dwelling, which is in fuel poverty, is considered to be non-decent. A dwelling is in fuel poverty if the occupiers spend more than 10% of their net income (after Tax, N.I and housing cost e.g. mortgage or rent) on heating and hot water.

E.10 A number of Local Authorities criticized this approach, as it requires a fully calculated SAP for each dwelling that is being examined. Whilst this is fine for a general statistical approach, such as this study, it does cause problems at the individual dwelling level for determining course of action.

E.11 The alternative, laid out in the new guidance, is to examine a dwelling’s heating systems and insulation types. The following is an extract from the new guidance:
E.12 The revised definition requires a dwelling to have both:

- Efficient heating; and
- Effective insulation

Efficient heating is defined as any gas or oil programmable central heating or electric storage heaters or programmable LPG/solid fuel central heating or similarly efficient heating systems, which are developed in the future. Heating sources, which provide less efficient options, fail the decent homes standard.

Because of the differences in efficiency between gas/oil heating systems and other heating systems listed, the level of insulation that is appropriate also differs:

- **For dwellings with gas/oil programmable heating**, cavity wall insulation (if there are cavity walls that can be insulated effectively) or at least 50mm loft insulation (if there is loft space) is an effective package of insulation;

- **For dwellings heated by electric storage radiators/LPG/programmable solid fuel central heating** a higher specification of insulation is required: at least 200mm of loft insulation (if there is a loft) and cavity wall insulation (if there are cavities that can be insulated effectively).

E.13 For the purposes of this study the above definition will be used in calculating the proportion of dwellings that are considered non-decent.
Appendix F - Glossary of terms

Age
This is the date of construction of the oldest part of the building.

Benefit receipt
Households in receipt of the benefits listed below, certain of which are means tested:

- Income support
- Housing benefit
- Council tax benefit
- Income based job seekers allowance
- Attendance allowance
- Disabled living allowance
- Industrial injuries disablement benefit
- War disablement pension
- Pension credit
- Working tax credit (with a disability element) [total income < £16,190]
- Child tax credit [total income < £16,190]
- Employment support allowance

Carbon dioxide (CO₂) emissions
The total carbon dioxide emissions from space heating, water heating, ventilation and lighting, less the emissions saved by energy generation as derived from SAP calculations and assumptions. These are measured in tonnes/year.

Decent homes
A decent home is one that meets **all** of the following four criteria:

a) meets the **statutory minimum** standard for housing. From April 2006 the Fitness Standard was replaced by the Housing Health and Safety Rating System (HHSRS).

b) it is in a reasonable state of **repair** (assessed from the age and condition of a range of building components including walls, roofs, windows, doors, chimneys, electrics and heating systems).

c) it has reasonably **modern facilities and services** (assessed according to the age, size and layout/location of the kitchen, bathroom and WC and any common areas for blocks of flats, and to noise insulation).

d) it provides a reasonable degree of **thermal comfort** (adequate heating and effective thermal insulation).
Disability
Households with a resident who define themselves as having one or more of the following:

- Physical impairment
- Hearing impairment
- Vision impairment
- Learning difficulties
- Mental health condition
- Long standing illness
- Cognitive impairment
- Other disability

Dwelling
A dwelling is a self-contained unit of accommodation (normally a house or flat) where all the rooms and amenities (i.e. kitchen, bath/shower room and WC) are for the exclusive use of the household(s) occupying them. For the most part a dwelling will be occupied by one household. However, it may contain none (vacant dwelling) or may contain more than one (House in Multiple occupation or HMO).

Dwelling type
Dwellings are classified, on the basis of the surveyors’ inspection, into the following categories:

- **small terraced house**: a house with a total floor area of less than 70m² forming part of a block where at least one house is attached to two or more other houses.
- **medium/large terraced house**: a house with a total floor area of 70m² or more forming part of a block where at least one house is attached to two or more other houses.
- **semi-detached house**: a house that is attached to just one other in a block of two.
- **detached house**: a house where none of the habitable structure is joined to another building (other than garages, outhouses etc.).
- **bungalow**: a house with all of the habitable accommodation on one floor.
- **converted flat**: a flat resulting from the conversion of a house or former non-residential building. Includes buildings converted into a flat plus commercial premises (typically corner shops).
- **purpose built flat, low rise**: a flat in a purpose built block less than six storeys high. Includes cases where there is only one flat with independent access in a building which is also used for non-domestic purposes.
- **purpose built flat, high rise**: a flat in a purpose built block of at least six storeys high.
Energy efficiency rating
The measure of energy efficiency used is the energy cost rating as determined by the Government’s Standard Assessment Procedure (SAP), used to monitor the energy efficiency of dwellings. This is based on a home’s energy costs per m² of floor area for standard occupancy of a dwelling and a standard heating regime and is calculated from the survey using a simplified form of the SAP. The energy costs take into account the costs of space and water heating, ventilation and lighting, less cost savings from energy generation technologies. They do not take into account variation in geographical location. The rating is expressed on a scale of 1–100 where a dwelling with a rating of 1 has poor energy efficiency (high costs) and a dwelling with a rating of 100 represents zero net energy cost per year.

Energy Efficiency Rating (EER) Bands
The energy efficiency rating is also presented in an A–G banding system for an Energy Performance Certificate, where Band A rating represents low energy costs (i.e. the most efficient band) and Band G rating represents high energy costs (the least efficient band). The break points in SAP used for the EER bands are:

- Band A (92–100)
- Band B (81–91)
- Band C (69–80)
- Band D (55–68)
- Band E (39–54)
- Band F (21–38)
- Band G (1–20)

Excess cold (HHSRS Category 1 hazard)
Households living in homes with a threat to health arising from sub-optimal indoor temperatures. The assessment is based on the most vulnerable group who, for this hazard, are those aged 65 years or more (the assessment does not require a person of this age to be an occupant). This hazard is based on dwellings with an energy efficiency rating of less than 35.

Fuel poverty
The occupiers of a dwelling are considered to be in fuel poverty if more than 10% of their net household income would need to be spent on heating and hot water to give an adequate provision of warmth and hot water.

Head of Household
This is the person in whose name the dwelling is owned or rented or their partner.

Heating system

* a) main space heating type:

 central heating system: most commonly a system with a gas fired boiler and radiators which distribute heat throughout the dwelling (but also included in
this definition are warm air systems, electric ceiling/underfloor and communal heating). It is generally considered to be a cost effective and relatively efficient method of heating a dwelling.

storage heaters: predominately used in dwellings that have an off-peak electricity tariff. Storage heaters use off-peak electricity to store heat in clay bricks or a ceramic material, this heat is then released throughout the day. However, storage heating can prove expensive if too much on peak electricity is used during the day.

room heaters: this category includes all other types of heater such as fixed gas, fixed electric or portable electric heaters, this type of heating is generally considered to be the least cost effective of the main systems and produces more carbon dioxide emissions per kWh.

b) heating fuel:

gas: mains gas is relatively inexpensive and produces lower emissions per unit of energy than most other commonly used fuels. Liquefied Petroleum Gas and bottled gas are still associated with slightly higher costs and emissions.

electricity: standard rate electricity has the highest costs and CO\textsubscript{2} emissions associated with main fuels, but is used in dwellings without a viable alternative or a back-up to mains gas. An off-peak tariff such as Economy 7, is cheaper than bottled gas but with the same emissions as standard electricity.

oil: in terms of both costs and emissions, oil lies between main gas and electricity.

solid fuel: these are similar costs to oil with the exception of processed wood which can be more expensive than off-peak electricity. Fuels included are coal and anthracite, with CO\textsubscript{2} emissions above those of gas and oil; wood, which has the lowest emissions of the main fuels; and smokeless fuel, whose emissions are close to those of electricity. By law, areas (usually towns or cities) are designated as smoke control areas where solid fuels emitting smoke are illegal.

Household

A household is defined as one person living alone or a group of people, who may or may not be related, living in the same dwelling who share at least one living or sitting room and/or have a regular arrangement to share at least one meal a day. Shared houses where the occupants have a joint tenancy or where they came together as a group to rent the house and would themselves fill any vacancies rather than expecting the landlord to do this are also classed as a single household; even though they may not share a sitting room or a meal per day.

Household type: The main classification of household type uses the following categories:

- Married/cohabiting couple with no dependent children – these households may however include non-dependent child(ren)
- Married/cohabiting couple with dependent child(ren) – may also include non-dependent child(ren)
- Lone parent family (one parent with dependent child(ren) – may also include non-dependent child(ren)
• Other multi-person household (includes flat sharers, lone parents with non-dependent children only and households containing more than one couple or lone parent family)

• One person

Housing Health and Safety Rating System (HHSRS):
The Housing Health and Safety Rating System (HHSRS) is a risk assessment tool used to assess potential risks to the health and safety of occupants in residential properties in England and Wales. It replaced the Fitness Standard in April 2006. The purpose of the HHSRS assessment is not to set a standard but to generate objective information in order to determine and inform enforcement decisions. There are 29 categories of hazard, each of which is separately rated, based on the risk to the potential occupant who is most vulnerable to that hazard. The individual hazard scores are grouped into 10 bands where the highest bands (A–C representing scores of 1000 or more) are considered to pose Category 1 Hazards. Local authorities have a duty to act where Category 1 Hazards are present local authorities may take into account the vulnerability of the actual occupant in determining the best course of action. For the purposes of the Decent Homes standard, dwellings posing a Category 1 Hazard are non-decent on its criterion that a home must meet the statutory minimum requirements.

Income
Income of the head of household and, where appropriate, the partner of the head of household. Responses are combined to give a gross household income.

SAP
The energy cost rating as determined by Government’s Standard Assessment Procedure (SAP) and is used to monitor the energy efficiency of dwellings. It is an index based on calculated annual space and water heating costs for a standard heating regime and is expressed on a scale of 1 (highly inefficient) to 100 (highly efficient with 100 representing zero energy cost).
Appendix G - Additional amenities

G.1 The following charts examine the position for electrical systems and boilers. Electrical systems over 30 years of age are considered as reaching a point where regular inspection and testing is advisable to ensure that they are not likely to present a hazard. Many boilers over the age of 15 will still be working satisfactorily but they will be reaching the end of their economic life and their energy efficiency is likely to be declining. Boilers installed now have much higher levels of efficiency in order to meet current Building Regulations.

G.2 70% of boilers and 60% of electrical systems are either older than the age specified in the criterion or will become so in the next 10 years.

Figure F.1 Electrics and boiler age

![Boiler Age Chart]

![Electrics Age Chart]

Source: 2010 House Condition Survey

G.3 The age bands used in these charts and those used in chapter 7 differ, dependent upon the design life of the amenity in question. The second band in each chart represents where the amenity will become older than its design life during the next ten years.